Midterm 1

This is a take-home exam: You cannot talk to anyone (except me) about anything about this exam and you can only look at our book (Walker), class notes and solutions to our HW problems posted by me or done by yourself. No other reference, including the Internet. Failing to follow these instructions will result in a zero for the exam. Moreover, I will report the incident to the university and do all in my power to get the maximal penalty for the infraction.

Due date: noon on Friday ($02 / 21$). If you cannot bring it to class or to me, a scanned/typed copy by e-mail would be OK.

1) [20 points] Let R be a PID and I be an ideal of R. Prove that every ideal of R / I is principal. [In particular, if I is a prime ideal, then R / I is also a PID.]
2) [20 points] Let R be a commutative ring with 1 with no non-zero nilpotent element. [So, in R, if $a^{n}=0$ for some $n \in \mathbb{Z}_{>0}$, then $\left.a=0\right]$. Prove that if $f \in R[x]$ is a zero divisor in $R[x]$, then there exists $b \in R \backslash\{0\}$ such that $b \cdot f=0$. [Note I said" $b \in R \backslash\{0\}$ ", not $" b \in R[x] \backslash\{0\} "$.
3) [20 points] Prove that the quotient of a UFD by a prime ideal might not be a UFD. [Hint: We don't know many non-UFDs, so take a look at those!]
4) [20 points] Let F, K_{1}, K_{2} and L be fields with $F \subseteq K_{i} \subseteq L$ for $i=1,2$.
(a) Prove that the intersection of all subfields of L containing both K_{1} and K_{2} is a field. [This field is called the compositum of K_{1} and K_{2} and it is denoted by $K_{1} \cdot K_{2}$ or $K_{1} K_{2}$. It is clearly the minimal common extension of K_{1} and K_{2}.]
(b) Prove that $K_{1} \cdot K_{2}$ is the set of all $f\left(\alpha_{1}, \ldots, \alpha_{k}\right)$, with $f \in F\left(x_{1}, \ldots, x_{k}\right)$, for some $k \in$ $\mathbb{Z}_{>0}$, defined at $\left(\alpha_{1}, \ldots, \alpha_{k}\right)$ [i.e., the denominator of the rational function $f\left(x_{1}, \ldots, x_{k}\right)$ does not vanish at $\left.\left(\alpha_{1}, \ldots, \alpha_{k}\right)\right]$ and $\alpha_{i} \in K_{1} \cup K_{2}$ for all i.
(c) Prove that if K_{1} and K_{2} are both algebraic over F, then $K_{1} \cdot K_{2}$ [as above] is also algebraic over F.
5) [20 points] Let p be a prime, $q=p^{r}$ for some $r \in \mathbb{Z}_{>0}$, and \mathbb{F}_{q} be the finite field with q elements [in some fixed algebraic closure of \mathbb{F}_{p}]. Prove that if $\sigma \in \operatorname{Aut}\left(\mathbb{F}_{q}\right)$, then there exists some $t \in \mathbb{Z}_{>0}$ such that $\sigma(\alpha)=\alpha^{t}$ for all $\alpha \in \mathbb{F}_{q}$ and $\operatorname{gcd}(t, q-1)=1$. [It is true, in fact, that t must be a power of p, but you don't need to show that.]
