Midterm 1 Solutions

1) [20 points] Let R be a PID and I be an ideal of R. Prove that every ideal of R / I is principal. [In particular, if I is a prime ideal, then R / I is also a PID.]
Proof. Let \bar{J} be an ideal of R / I. By correspondence, we have that $\bar{J}=J / I=\{a+I: a \in$ $J\}$, for some ideal J of R. Since R is a PID, there exists $b \in R$ such that $J=(b)$.

So,

$$
\bar{J}=\{a+I: a \in(b)\}=\{b r+I: r \in R\}=\{(b+I)(r+I): r+I \in R / I\}=(b+I) .
$$

So, \bar{J} is principal, and since it was arbitrary, R / I is a PID.
2) [20 points] Let R be a commutative ring with 1 with no non-zero nilpotent element. [So, in R, if $a^{n}=0$ for some $n \in \mathbb{Z}_{>0}$, then $\left.a=0\right]$. Prove that if $f \in R[x]$ is a zero divisor in $R[x]$, then there exists $b \in R \backslash\{0\}$ such that $b \cdot f=0$. [Note I said " $b \in R \backslash\{0\}$ ", not " $b \in R[x] \backslash\{0\} "$.]

Proof. Let $f \sum_{i=0}^{m} a_{i} x^{i} \in R[x]$ be a nilpotent in $R[x]$. Thus, there exists $g=\sum_{i=0}^{n} b_{i} x^{i} \in F[x]$ such that $f \cdot g=0$. Let m_{0} and n_{0} be the least indices such that $a_{m_{0}}, b_{n_{0}} \neq 0$. Without loss of generality, we may assume $m_{0}=n_{0}=0$. [As if $\left(x^{m_{0}} f_{1}\right)\left(x^{n_{0}} g_{1}\right)=0$, then $f_{1} \cdot g_{1}=0$.]

Let $b=b_{0}^{m+1}$ [where $\left.m=\operatorname{deg} f\right]$. Since $b_{0} \neq 0$, we have that $b \neq 0$ by assumption. We prove, by induction on i, that $b_{0}^{i+1} \cdot a_{i}=0$ [and hence $b \cdot a_{i}=b_{0}^{m-i} b_{0}^{i+1} \cdot a_{i}=0$].

For $i=0$, the result follows from the fact that the constant term of $f \cdot g$, namely $a_{0} \cdot b_{0}$, must be zero.

Now, assume $a_{j} \cdot b_{0}^{j+1}=0$ for all $j \in\{0, \ldots,(i-1)\}$. Thus, we also have $b_{o}^{i} a_{j}=0$ for all $j \in\{0, \ldots,(i-1)\}$.

Now, look at the term of degree i in $f \cdot g$. Since this product is zero we have that

$$
\sum_{j=0}^{i} a_{j} \cdot b_{i-j}=a_{i} \cdot b_{0}+\sum_{j=0}^{i-1} a_{j} \cdot b_{i-j}=0
$$

[Here, as usual, we have $a_{j}=0$ if $j>m$ and $b_{j}=0$ if $j>n$.] Multiplying by b_{0}^{i}, we get

$$
a_{i} \cdot b_{0}^{i+1}+\sum_{j=0}^{i-1} a_{j} \cdot b_{0}^{i} \cdot b_{i-j}=0
$$

Since $a_{j} \cdot b_{0}^{i}=0$, we get that $a_{i} \cdot b_{0}^{i+1}=0$, finishing the proof.
3) [20 points] Prove that the quotient of a UFD by a prime ideal might not be a UFD. [Hint: We don't know many non-UFDs, so take a look at those!]

Proof. As we have seen, $\mathbb{Z}[\sqrt{-5}]$ is a domain, but not a UFD [as $6=2 \cdot 3=(1+\sqrt{-5})(1-$ $\sqrt{-5}$), and all $2,3,1 \pm \sqrt{-5}$ are irreducible].

Now, the minimal polynomial of $\sqrt{-5}$ is $x^{2}+5$ and so $\mathbb{Z}[\sqrt{-5}] \cong \mathbb{Z}[x] /\left(x^{2}+5\right)$. Since $\mathbb{Z}[x]$ is a UFD [since \mathbb{Z} is and if R is a UFD, then so is $R[x]]$, this gives us our example.
4) [20 points] Let F, K_{1}, K_{2} and L be fields with $F \subseteq K_{i} \subseteq L$ for $i=1,2$.
(a) Prove that the intersection of all subfields of L containing both K_{1} and K_{2} is a field. [This field is called the compositum of K_{1} and K_{2} and it is denoted by $K_{1} \cdot K_{2}$ or $K_{1} K_{2}$. It is clearly the minimal common extension of K_{1} and K_{2}.]

Proof. Let $K_{1} K_{2}$ be this intersection and $\alpha, \beta \in K_{1} K_{2}$. Then, for any subfield E of L containing the K_{i}, we have that $\alpha, \beta \in E$. Since E is a field, we have that $\alpha \pm \beta, \alpha \cdot \beta$ and α / β, if $\beta \neq 0$, are all in E. So, they are also in $K_{1} K_{2}$.
(b) Prove that $K_{1} \cdot K_{2}$ is the set of all $f\left(\alpha_{1}, \ldots, \alpha_{k}\right)$, with $f \in F\left(x_{1}, \ldots, x_{k}\right)$, for some $k \in$ $\mathbb{Z}_{>0}$, defined at $\left(\alpha_{1}, \ldots, \alpha_{k}\right)$ [i.e., the denominator of the rational function $f\left(x_{1}, \ldots, x_{k}\right)$ does not vanish at $\left.\left(\alpha_{1}, \ldots, \alpha_{k}\right)\right]$ and $\alpha_{i} \in K_{1} \cup K_{2}$ for all i.

Proof. It's easy to see that the set described above, call it K^{\prime}, is a field containing both K_{i} 's. So, $K_{1} K_{2} \subseteq K^{\prime}$. But also, any field containing both K_{i} 's [and so also F] contains K^{\prime}. Hence, they are equal.
(c) Prove that if K_{1} and K_{2} are both algebraic over F, then $K_{1} \cdot K_{2}$ [as above] is also algebraic over F.

Proof. Let $\alpha \in K_{1} K_{2}$. By (b) we have that

$$
\alpha=\frac{f\left(\alpha_{1}, \ldots, \alpha_{r}\right)}{g\left(\beta_{1}, \ldots, \beta_{s}\right)}, \quad f \in F\left[x_{1}, \ldots, x_{r}\right], g \in F\left[x_{1}, \ldots, x_{s}\right], \alpha_{i}, \beta_{j} \in K_{1} \cup K_{2} .
$$

Then, $\alpha \in E \stackrel{\text { def }}{=} F\left[\alpha_{1}, \ldots, \alpha_{r}, \beta_{1}, \ldots, \beta_{s}\right]$. Since each α_{i} and β_{j} are either in K_{1} or K_{2} [both algebraic extensions of F], we have that each α_{i} and β_{j} is algebraic, and hence $F\left[\alpha_{i}\right] / F$ and $F\left[\beta_{j}\right] / F$ are finite extensions. So, $E / F=F\left[\alpha_{1}, \ldots, \alpha_{r}, \beta_{1}, \ldots, \beta_{s}\right] / F$ is finite [of degree less than or equal to the product of $\left[F\left[\alpha_{i}\right]: F\right]$ and $\left[F\left[\beta_{j}\right]: F\right]$ for all i and j.] Since $\alpha \in E$, this means that α is algebraic over F.
Since α was arbitrary, $K_{1} K_{2} / F$ is algebraic.
5) [20 points] Let p be a prime, $q=p^{r}$ for some $r \in \mathbb{Z}_{>0}$, and \mathbb{F}_{q} be the finite field with q elements [in some fixed algebraic closure of \mathbb{F}_{p}]. Prove that if $\sigma \in \operatorname{Aut}\left(\mathbb{F}_{q}\right)$, then there exists some $t \in \mathbb{Z}_{>0}$ such that $\sigma(\alpha)=\alpha^{t}$ for all $\alpha \in \mathbb{F}_{q}$ and $\operatorname{gcd}(t, q-1)=1$. [It is true, in fact, that t must be a power of p, but you don't need to show that.]

Proof. Remember that since \mathbb{F}_{q} is a finite field, we have that $\mathbb{F}_{q}^{\times}=\langle\alpha\rangle$ [for some $\alpha \in \mathbb{F}_{q}$]. Since $\alpha \neq 0$, we have that $\sigma(\alpha) \neq 0$, i.e., $\sigma(\alpha) \in \mathbb{F}_{q}^{\times}=\langle\alpha\rangle$. Thus, $\sigma(\alpha)=\alpha^{t}$ for some $r \in\{1,2, \ldots,(q-1)\}$. Since σ is onto and only 0 is sent to 0 by σ, we have that σ induces an automorphism for the group \mathbb{F}_{q}^{\times}. Since it has to be onto, we must have that $\sigma(\alpha)=\alpha^{t}$ must be another generator of \mathbb{F}_{q}^{\times}, and hence $\operatorname{gcd}(t, q-1)=1$ [from group theory].

