
Midterm 1 Solutions

1) [20 points] Let R be a PID and I be an ideal of R. Prove that every ideal of R/I is
principal. [In particular, if I is a prime ideal, then R/I is also a PID.]

Proof. Let J̄ be an ideal of R/I. By correspondence, we have that J̄ = J/I = {a+ I : a ∈
J}, for some ideal J of R. Since R is a PID, there exists b ∈ R such that J = (b).

So,

J̄ = {a+ I : a ∈ (b)} = {br + I : r ∈ R} = {(b+ I)(r + I) : r + I ∈ R/I} = (b+ I).

So, J̄ is principal, and since it was arbitrary, R/I is a PID.

2) [20 points] Let R be a commutative ring with 1 with no non-zero nilpotent element. [So,
in R, if an = 0 for some n ∈ Z>0, then a = 0]. Prove that if f ∈ R[x] is a zero divisor
in R[x], then there exists b ∈ R \ {0} such that b · f = 0. [Note I said “b ∈ R \ {0}”, not
“b ∈ R[x] \ {0}”.]

Proof. Let f
∑m

i=0 aix
i ∈ R[x] be a nilpotent in R[x]. Thus, there exists g =

∑n
i=0 bix

i ∈ F [x]
such that f · g = 0. Let m0 and n0 be the least indices such that am0 , bn0 6= 0. Without loss
of generality, we may assume m0 = n0 = 0. [As if (xm0f1)(x

n0g1) = 0, then f1 · g1 = 0.]
Let b = bm+1

0 [where m = deg f ]. Since b0 6= 0, we have that b 6= 0 by assumption. We
prove, by induction on i, that bi+1

0 · ai = 0 [and hence b · ai = bm−i0 bi+1
0 · ai = 0].

For i = 0, the result follows from the fact that the constant term of f · g, namely a0 · b0,
must be zero.

Now, assume aj · bj+1
0 = 0 for all j ∈ {0, . . . , (i− 1)}. Thus, we also have bioaj = 0 for all

j ∈ {0, . . . , (i− 1)}.
Now, look at the term of degree i in f · g. Since this product is zero we have that

i∑
j=0

aj · bi−j = ai · b0 +
i−1∑
j=0

aj · bi−j = 0.

[Here, as usual, we have aj = 0 if j > m and bj = 0 if j > n.] Multiplying by bi0, we get

ai · bi+1
0 +

i−1∑
j=0

aj · bi0 · bi−j = 0.

Since aj · bi0 = 0, we get that ai · bi+1
0 = 0, finishing the proof.
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3) [20 points] Prove that the quotient of a UFD by a prime ideal might not be a UFD. [Hint:
We don’t know many non-UFDs, so take a look at those!]

Proof. As we have seen, Z[
√
−5] is a domain, but not a UFD [as 6 = 2 · 3 = (1 +

√
−5)(1−√

−5), and all 2, 3, 1±
√
−5 are irreducible].

Now, the minimal polynomial of
√
−5 is x2 + 5 and so Z[

√
−5] ∼= Z[x]/(x2 + 5). Since

Z[x] is a UFD [since Z is and if R is a UFD, then so is R[x]], this gives us our example.

4) [20 points] Let F , K1, K2 and L be fields with F ⊆ Ki ⊆ L for i = 1, 2.

(a) Prove that the intersection of all subfields of L containing both K1 and K2 is a field.
[This field is called the compositum of K1 and K2 and it is denoted by K1 ·K2 or K1K2.
It is clearly the minimal common extension of K1 and K2.]

Proof. Let K1K2 be this intersection and α, β ∈ K1K2. Then, for any subfield E of L
containing the Ki, we have that α, β ∈ E. Since E is a field, we have that α± β, α · β
and α/β, if β 6= 0, are all in E. So, they are also in K1K2.

(b) Prove that K1 ·K2 is the set of all f(α1, . . . , αk), with f ∈ F (x1, . . . , xk), for some k ∈
Z>0, defined at (α1, . . . , αk) [i.e., the denominator of the rational function f(x1, . . . , xk)
does not vanish at (α1, . . . , αk)] and αi ∈ K1 ∪K2 for all i.

Proof. It’s easy to see that the set described above, call it K ′, is a field containing
both Ki’s. So, K1K2 ⊆ K ′. But also, any field containing both Ki’s [and so also F ]
contains K ′. Hence, they are equal.

(c) Prove that if K1 and K2 are both algebraic over F , then K1 · K2 [as above] is also
algebraic over F .

Proof. Let α ∈ K1K2. By (b) we have that

α =
f(α1, . . . , αr)

g(β1, . . . , βs)
, f ∈ F [x1, . . . , xr], g ∈ F [x1, . . . , xs], αi, βj ∈ K1 ∪K2.

Then, α ∈ E def
= F [α1, . . . , αr, β1, . . . , βs]. Since each αi and βj are either in K1 or K2

[both algebraic extensions of F ], we have that each αi and βj is algebraic, and hence
F [αi]/F and F [βj]/F are finite extensions. So, E/F = F [α1, . . . , αr, β1, . . . , βs]/F is
finite [of degree less than or equal to the product of [F [αi] : F ] and [F [βj] : F ] for all i
and j.] Since α ∈ E, this means that α is algebraic over F .

Since α was arbitrary, K1K2/F is algebraic.
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5) [20 points] Let p be a prime, q = pr for some r ∈ Z>0, and Fq be the finite field with q
elements [in some fixed algebraic closure of Fp]. Prove that if σ ∈ Aut(Fq), then there exists
some t ∈ Z>0 such that σ(α) = αt for all α ∈ Fq and gcd(t, q − 1) = 1. [It is true, in fact,
that t must be a power of p, but you don’t need to show that.]

Proof. Remember that since Fq is a finite field, we have that F×q = 〈α〉 [for some α ∈ Fq].
Since α 6= 0, we have that σ(α) 6= 0, i.e., σ(α) ∈ F×q = 〈α〉. Thus, σ(α) = αt for some
r ∈ {1, 2, . . . , (q − 1)}. Since σ is onto and only 0 is sent to 0 by σ, we have that σ induces
an automorphism for the group F×q . Since it has to be onto, we must have that σ(α) = αt

must be another generator of F×q , and hence gcd(t, q − 1) = 1 [from group theory].

3


