Claim: If $\alpha \in \mathbb{Q}_p$, then there is a sequence $\{a_i\}_{i \ge n_0}$ with $a_i \in \{0, 1, \dots, (p-1)\}$ such that $\alpha = \sum_{i=n_0}^{\infty} a_i p^i$ [or, equivalently, $\lim_{n\to\infty} \left| \alpha - \sum_{i=n_0}^n a_i p^i \right|_p = 0$].

Proof. First, remember that if $\beta, \gamma \in \mathbb{Q}$, with $\beta = \sum_{i=k_0}^{\infty} b_i p^i$, $\gamma = \sum_{i=l_0}^{\infty} c_i p^i$ and $|\beta - \gamma|_p < p^{-N}$, for some $N > \max\{m_0, l_0\}$, then $m_0 = l_0$ and $b_i = c_i$ for all $i \in$ $\{m_0, m_0 + 1, \ldots, N\}.$

So, let $\{\alpha_i\}$ be a Cauchy sequence in \mathbb{Q} that converges to α [in \mathbb{Q}_p]. We will now define the a_i 's as in the statement.

Let k be a given positive integer. Since $\alpha_n \longrightarrow \alpha$, there is N_k such that if $n \ge N_k$ we have $|\alpha_n - \alpha|_p < p^{-k-1}$. Possibly replacing N_k by the max $\{N_k, N_{k-1}+1\}$, if k > 1, we may assume $N_1 < N_2 < N_3 < \cdots$.

We then define $\{a_{n_0}, \ldots, a_k\}$, with $a_i \in \{0, 1, \ldots, (p-1)\}$, as the [unique] coefficients such that

$$\alpha_{N_k} = \sum_{i=n_0}^k a_i p^i + p^{k+1} [\cdots].$$

The omitted part is just the remaining of its power series.

Are these well defined? More precisely, to get a_{k+1} we do the same as above, with k replaced by (k + 1), but these would define some a'_i for $i \in \{n_0, \ldots, k, k + 1\}$. The question is if $a'_i = a_i$ for $i \in \{n_0, \ldots, k\}$, so that we are in fact only defining a "new" $a_{k+1}?$

This is, indeed the case: we have that $N_{k+1} > N_k$, and thus

$$\begin{aligned} \left| \alpha_{N_{k+1}} - \alpha_{N_k} \right|_p &= \left| (\alpha_{N_{k+1}} - \alpha) + (\alpha - \alpha_{N_k}) \right|_p \\ &\leq \left| \alpha_{N_{k+1}} - \alpha \right|_p + \left| \alpha - \alpha_{N_k} \right|_p < 2p^{-k-1} \le p^{-k}. \end{aligned}$$

Since $\alpha_{N_k}, \alpha_{N_{k+1}} \in \mathbb{Q}$, by our first observation, we have that if $\alpha_{N_{k+1}} = \sum_{n_0}^k a_i p^i +$ $p^{k+1}[\cdots].$

We now claim that $\lim_{k\to\infty} \left| \alpha - \sum_{i=n_0}^k a_i p^i \right|_n = 0$ [which will finish the proof]. Remember that

$$|\alpha - \alpha_{N_k}|_p < p^{-k-1}$$
 [by def. of N_k]

and that

$$\left| \alpha_{N_k} - \sum_{i=n_0}^k a_i p^i \right|_p < p^{-k} \quad [by \text{ def. of the } a_i's]$$

Then:

$$0 \leq \left| \alpha - \sum_{i=n_0}^k a_i p^i \right|_p = \left| \alpha - \alpha_{N_k} + \alpha_{N_k} - \left(\sum_{i=n_0}^k a_i p^i \right) \right|_p$$
$$\leq \left| \alpha - \alpha_{N_k} \right|_p + \left| \alpha_{N_k} - \left(\sum_{i=n_0}^k a_i p^i \right) \right|_p$$
$$< p^{-k-1} + p^{-k} < 2p^{-k},$$

which gives us the desired result.