Claim: If $\alpha \in \mathbb{Q}_{p}$, then there is a sequence $\left\{a_{i}\right\}_{i \geq n_{0}}$ with $a_{i} \in\{0,1, \ldots,(p-1)\}$ such that $\alpha=\sum_{i=n_{0}}^{\infty} a_{i} p^{i}$ [or, equivalently, $\left.\lim _{n \rightarrow \infty}\left|\alpha-\sum_{i=n_{0}}^{n} a_{i} p^{i}\right|_{p}=0\right]$.

Proof. First, remember that if $\beta, \gamma \in \mathbb{Q}$, with $\beta=\sum_{i=k_{0}}^{\infty} b_{i} p^{i}, \gamma=\sum_{i=l_{0}}^{\infty} c_{i} p^{i}$ and $|\beta-\gamma|_{p}<p^{-N}$, for some $N>\max \left\{m_{0}, l_{0}\right\}$, then $m_{0}=l_{0}$ and $b_{i}=c_{i}$ for all $i \in$ $\left\{m_{0}, m_{0}+1, \ldots, N\right\}$.

So, let $\left\{\alpha_{i}\right\}$ be a Cauchy sequence in \mathbb{Q} that converges to $\alpha\left[\right.$ in $\left.\mathbb{Q}_{p}\right]$. We will now define the a_{i} 's as in the statement.

Let k be a given positive integer. Since $\alpha_{n} \longrightarrow \alpha$, there is N_{k} such that if $n \geq N_{k}$ we have $\left|\alpha_{n}-\alpha\right|_{p}<p^{-k-1}$. Possibly replacing N_{k} by the $\max \left\{N_{k}, N_{k-1}+1\right\}$, if $k>1$, we may assume $N_{1}<N_{2}<N_{3}<\cdots$.

We then define $\left\{a_{n_{0}}, \ldots, a_{k}\right\}$, with $a_{i} \in\{0,1, \ldots,(p-1)\}$, as the [unique] coefficients such that

$$
\alpha_{N_{k}}=\sum_{i=n_{0}}^{k} a_{i} p^{i}+p^{k+1}[\cdots] .
$$

[The omitted part is just the remaining of its power series.]
Are these well defined? More precisely, to get a_{k+1} we do the same as above, with k replaced by $(k+1)$, but these would define some a_{i}^{\prime} for $i \in\left\{n_{0}, \ldots, k, k+1\right\}$. The question is if $a_{i}^{\prime}=a_{i}$ for $i \in\left\{n_{0}, \ldots, k\right\}$, so that we are in fact only defining a "new" a_{k+1} ?

This is, indeed the case: we have that $N_{k+1}>N_{k}$, and thus

$$
\begin{aligned}
\left|\alpha_{N_{k+1}}-\alpha_{N_{k}}\right|_{p}=\mid\left(\alpha_{N_{k+1}}-\alpha\right)+(& \left.\alpha-\alpha_{N_{k}}\right)\left.\right|_{p} \\
& \leq\left|\alpha_{N_{k+1}}-\alpha\right|_{p}+\left|\alpha-\alpha_{N_{k}}\right|_{p}<2 p^{-k-1} \leq p^{-k}
\end{aligned}
$$

Since $\alpha_{N_{k}}, \alpha_{N_{k+1}} \in \mathbb{Q}$, by our first observation, we have that if $\alpha_{N_{k+1}}=\sum_{n_{0}}^{k} a_{i} p^{i}+$ $p^{k+1}[\cdots]$.

We now claim that $\lim _{k \rightarrow \infty}\left|\alpha-\sum_{i=n_{0}}^{k} a_{i} p^{i}\right|_{p}=0$ [which will finish the proof]. Remember that

$$
\left|\alpha-\alpha_{N_{k}}\right|_{p}<p^{-k-1} \quad\left[\text { by def. of } N_{k}\right]
$$

and that

$$
\left|\alpha_{N_{k}}-\sum_{i=n_{0}}^{k} a_{i} p^{i}\right|_{p}<p^{-k} \quad\left[\text { by def. of the } a_{i}{ }^{\prime} \mathrm{s}\right] .
$$

Then:

$$
\begin{aligned}
0 \leq\left|\alpha-\sum_{i=n_{0}}^{k} a_{i} p^{i}\right|_{p} & =\left|\alpha-\alpha_{N_{k}}+\alpha_{N_{k}}-\left(\sum_{i=n_{0}}^{k} a_{i} p^{i}\right)\right|_{p} \\
& \leq\left|\alpha-\alpha_{N_{k}}\right|_{p}+\left|\alpha_{N_{k}}-\left(\sum_{i=n_{0}}^{k} a_{i} p^{i}\right)\right|_{p} \\
& <p^{-k-1}+p^{-k}<2 p^{-k}
\end{aligned}
$$

which gives us the desired result.

