
1) [8 points] Rewrite the statement [about real numbers]:

¬[∀x ∈ R, ∃y ∈ N st [(x ≥ y)→ ((x + y > 0) ∧ (x = y + 2))]]

as a positive statement [without the “¬”symbol].

Solution.

∃x ∈ R st ∀y ∈ N, [(x ≥ y) ∧ ((x + y ≤ 0) ∨ (x 6= y + 2))]

2) [8 points] Fill the truth table below.

P Q R P ∧Q (¬Q) ∨R (P ∧Q)→ ((¬Q) ∨R)

T T T T T T

F T T F T T

T T F T F F

F T F F F T
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3) [10 points] Prove that A ∪ (B ∩ C) = (A ∪B) ∩ (A ∪ C).

Proof. Let x ∈ A ∪ (B ∩ C). Then, x ∈ A or x ∈ B ∩ C.

If x ∈ A, then x ∈ A ∪B and x ∈ A ∪ C, by definition of unions. Thus, x ∈ (A ∪B) ∩ (A ∪ C), by

definition of intersection.

If x ∈ B ∩ C, then x ∈ B and x ∈ C. Thus, the former tells us that x ∈ A ∪ B, while the latter

tells us that x ∈ A ∪ C. Hence, x ∈ (A ∪B) ∩ (A ∪ C).

Thus, A ∪ (B ∩ C) ⊆ (A ∪B) ∩ (A ∪ C).

Now, let x ∈ (A ∪B) ∩ (A ∪ C). So, x ∈ A ∪B and x ∈ A ∪ C.

Suppose that x 6∈ A. Since x ∈ A ∪ B, we have that either x ∈ A or x ∈ C. Since x 6∈ A, we

conclude that x ∈ B. Similarly, since x ∈ A ∪ C, but x 6∈ A, we must have that x ∈ C. Therefore,

x ∈ B ∩ C.

Hence, either x ∈ A or x ∈ B ∩ C, i.e., x ∈ A ∪ (A ∩ C). Thus, (A ∪B) ∩ (A ∪ C) ⊆ A ∪ (A ∩ C).

Since we have both inclusions, we have (A ∪B) ∩ (A ∪ C) = A ∪ (A ∩ C).

4) [10 points] Let F and G be a families of sets. Prove that
⋂

(F ∪ G) = (
⋂
F) ∩ (

⋂
G).

Proof. Let x ∈
⋂

(F∪G). Thus, for all A ∈ F∪G, we have that x ∈ A. In particular, if A ∈ F , then

x ∈ A [as F ⊆ F ∪ G], and if A ∈ G, then x ∈ A [as G ⊆ F ∪ G]. The former means that x ∈
⋂
F ,

while the latter means that x ∈ ∩G. Therefore, x ∈ (
⋂
F)∩(

⋂
G). Hence,

⋂
(F∪G) ⊆ (

⋂
F)∩(

⋂
G).

Now, let x ∈ (
⋂
F)∩ (

⋂
G). Then, x ∈

⋂
F and x ∈

⋂
G. Now, let A ∈ F ∪G. Then, either A ∈ F

or A ∈ G. If the former holds, then x ∈ A, as x ∈
⋂
F [by definition of the intersection of a family],

and if the latter holds, then, similarly, we have that x ∈ A.

Thus, for all A ∈ F ∩ G, we have that x ∈ A. Therefore, x ∈
⋂

(F ∪ G) [by definition]. Hence,

(
⋂
F) ∩ (

⋂
G) ⊆

⋂
(F ∪ G).

Since we have both inclusions, the sets are equal.

2



5) [10 points] Let A be a set with partial order R and a ∈ A the smallest element of A. Show that

A has a unique minimal element. [What could this element be? In fact, we did this in class.]

Proof. This unique minimal element must be the smallest element. [I actually tell you that in the

next problem!] So, that’s what we will show.

[Remember, x ∈ X is minimal if for all y ∈ X, yRx implies y = x. Also, x ∈ X is the smallest

element if for all y ∈ X, we have xRy.]

[a is minimal:] Let b ∈ A and suppose that bRa. Since a is the least element, we have also that

aRb [as b ∈ A]. Hence, since R is anti-symmetric, we have a = b, and hence a is minimal.

[a is the unique minimal:] Suppose c ∈ A is minimal. Since a is the smallest element, we have that

aRc. Thus, by definition of minimal, we have that c = a. Thus, every minimal element must be

equal to a.
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6) [12 points] Given n ∈ {1, 2, 3, 4, . . .}, let (0, 1/n) be [as usual in Calculus] the open interval of R
given by (0, 1/n) = {x ∈ R : 0 < x < 1/n}.
Let

F = {{0}} ∪ {(0, 1/n) : n ∈ {1, 2, 3, 4, . . .}}

= {{0}, (0, 1), (0, 1/2), (0, 1/3), (0, 1/4), . . .},

and consider the partial order in F given by containment [as usual for sets].

(a) Show that {0} is a minimal element of F .

Proof. Suppose that A ∈ F is such that A ⊆ {0}. [We need to show A = {0}.] Then, since

A has only one element, either A = ∅ or A = {0}. But the former cannot occur, as ∅ 6∈ F .

[Another way: if A ∈ F , A ⊆ {0}, but A 6= {0}, then A = (0, 1/n) for some n. But this is a

contradiction, as 1/(2n) ∈ (0, 1/n), but 1/(2n) 6∈ {0}.]

(b) Show that for any n ∈ {1, 2, 3, . . .}, (0, 1/n) is not a minimal element of F .

Proof. We have that (0, 1/(n + 1)) ⊆ (0, 1/n), but (0, 1/(n + 1)) 6= (0, 1/n).

(c) Show that F has no smallest element. [Hint: Remember that if A ∈ F is a smallest element,

then it is also a minimal element.]

Proof. Since the only minimal element is {0} [as seen above], it would have to be the smallest

element of F has such an element. But {0} * (0, 1/2), so it is not the smallest element. Thus,

F does not have a smallest element.

[Note: This shows that a set can have only one minimal element, but no smallest element.]
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7) [10 points] Let R be the equivalence relation on R given by aRb if (a− b) ∈ Z. [You do not need

to prove it is an equivalence relation.]

(a) Show that [0]R = Z. [Remember that [0]R is the equivalence class of 0 with respect to the

relation R given above.]

Proof. We have:

x ∈ [0]R iff x ∈ {y ∈ R : yR0}

iff x ∈ {y ∈ R : (y − 0) ∈ Z}

iff x ∈ {y ∈ R : y ∈ Z}

iff x ∈ Z.

Thus, [0]R = Z.

(b) Find a real number x with 0 ≤ x < 1, such that [2.31]R = [x]R.

Solution. Remember: [2.31]R = [x]R iff xR2.31.

We have that x = 0.31 is such that 0 ≤ 0.31 < 1 and xR2.31, as x− 2.31 = −2 ∈ Z.
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8) [12 points] Let R be an equivalence relation on a set A.

(a) Show that both Ran(R) [the range of R] and Dom(R) [the domain of R] are equal to A.

Proof. Let a ∈ A. Since (a, a) ∈ R [as R is reflexive], we have that a ∈ Dom(R) and

a ∈ Ran(R). So, A is contained in both. Since both domain and range are subsets of A by

definition, we have the equalities.

(b) Show that R−1 [the inverse relation] is equal to R.

Proof. Let (a, b) ∈ R. Since R is symmetric, we have that (b, a) ∈ R. Then, (a, b) ∈ R−1 by

definition of the inverse relation. Thus, R ⊆ R−1.

Let (a, b) ∈ R−1. Then, (b, a) ∈ R. Since R is symmetric, we have that (a, b) ∈ R. Thus,

R−1 ⊆ R.

Since we have both inclusions, the sets must be equal.

(c) Show that R ◦R [the composition] is also equal to R.

Proof. Let (a, c) ∈ R◦R. Then, by definition, there is b ∈ A such that (a, b), (b, c) ∈ R. Since

R is transitive, this means that (a, c) ∈ R. Hence, R ◦R ⊆ R.

Now, let (a, b) ∈ R. Since R is reflexive, we have that (a, a) ∈ R. Since then (a, a), (a, b) ∈ R,

we have [by definition of composition] that (a, b) ∈ R ◦R. Thus, R ⊆ R ◦R.

Since we have both inclusions, the sets must be equal.
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9) [10 points] Prove that for n ≥ 0 we have

0 · 1 + 1 · 2 + 2 · 3 + · · ·+ n · (n + 1) =
n(n + 1)(n + 2)

3
.

Proof. We prove it by induction on n. For n = 0 we have that:

0 · 1 = 0 =
0 · 1 · 2

3
.

Now assume that

0 · 1 + 1 · 2 + 2 · 3 + · · ·+ n · (n + 1) =
n(n + 1)(n + 2)

3
.

Then,

0 · 1 + 1 · 2 + · · ·+ n · (n + 1) + (n + 1) · (n + 2)

=
n(n + 1)(n + 2)

3
+ (n + 1)(n + 2)

=
(n

3
+ 1
)

(n + 1)(n + 2)

=

(
n + 3

3

)
(n + 1)(n + 2)

=
(n + 1)(n + 2)(n + 3)

3
.

Hence, the formula works for (n + 1), which finishes the induction.
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10) [10 points] Remember that the Fibonacci sequence is given by:

F0 = 0, F1 = 1,

Fn = Fn−2 + Fn−1, for n ≥ 2.

Consider now the recursively defined sequence given by

a0 = 0, a1 = 1, a2 = 1,

an =
1

2
an−3 +

3

2
an−2 +

1

2
an−1, for n ≥ 3.

Prove that an = Fn for all n ≥ 0.

[Hint: 3
2an−2 = 1

2an−2 + an−2.]

Proof. We prove it by [strong] induction on n. We need three first steps:

a0 = 0 = F0, a1 = 1 = F1, a2 = 1 = 1 + 0 = F2.

Assume now that for some n ≥ 2 and all k ≤ n we have ak = Fk. Then:

an+1 =
1

2
an−2 +

3

2
an−1 +

1

2
an [recursive formula (as n+ 1 ≥ 3)]

=
1

2
Fn−2 +

3

2
Fn−1 +

1

2
Fn [by ind. hyp.]

=
1

2
Fn−2 +

1

2
Fn−1 + Fn−1 +

1

2
Fn [as in the hint]

=
1

2
(Fn−2 + Fn−1) + Fn−1 +

1

2
Fn [factor 1/2]

=
1

2
Fn + Fn−1 +

1

2
Fn [recursive formula for Fn]

= Fn + Fn−1 [add (1/2)Fn’s]

= Fn+1 [recursive formula for Fn+1]

Thus, the formula holds for n + 1, finishing the proof.
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