1) [8 points] Rewrite the statement [about real numbers]:

$$\neg [\forall x \in \mathbb{R}, \exists y \in \mathbb{N} \text{ st } [(x \ge y) \to ((x + y > 0) \land (x = y + 2))]]$$

as a positive statement [without the "¬"symbol].

Solution.

$$\exists x \in \mathbb{R} \text{ st } \forall y \in \mathbb{N}, \ [(x \ge y) \land ((x + y \le 0) \lor (x \ne y + 2))]$$

2) [8 points] Fill the truth table below.

P	Q	R	$P \wedge Q$	$(\neg Q) \lor R$	$(P \land Q) \to ((\neg Q) \lor R)$
Т	Т	Т	Т	Т	Т
F	Т	Т	F	Т	Т
Т	Т	F	Т	F	F
F	Т	F	F	F	Т

3) [10 points] Prove that $A \cup (B \cap C) = (A \cup B) \cap (A \cup C)$.

Proof. Let $x \in A \cup (B \cap C)$. Then, $x \in A$ or $x \in B \cap C$. If $x \in A$, then $x \in A \cup B$ and $x \in A \cup C$, by definition of unions. Thus, $x \in (A \cup B) \cap (A \cup C)$, by definition of intersection.

If $x \in B \cap C$, then $x \in B$ and $x \in C$. Thus, the former tells us that $x \in A \cup B$, while the latter tells us that $x \in A \cup C$. Hence, $x \in (A \cup B) \cap (A \cup C)$. Thus, $A \cup (B \cap C) \subseteq (A \cup B) \cap (A \cup C)$.

Now, let $x \in (A \cup B) \cap (A \cup C)$. So, $x \in A \cup B$ and $x \in A \cup C$.

Suppose that $x \notin A$. Since $x \in A \cup B$, we have that either $x \in A$ or $x \in C$. Since $x \notin A$, we conclude that $x \in B$. Similarly, since $x \in A \cup C$, but $x \notin A$, we must have that $x \in C$. Therefore, $x \in B \cap C$.

Hence, either $x \in A$ or $x \in B \cap C$, i.e., $x \in A \cup (A \cap C)$. Thus, $(A \cup B) \cap (A \cup C) \subseteq A \cup (A \cap C)$.

Since we have both inclusions, we have $(A \cup B) \cap (A \cup C) = A \cup (A \cap C)$.

4) [10 points] Let \mathcal{F} and \mathcal{G} be a families of sets. Prove that $\bigcap(\mathcal{F} \cup \mathcal{G}) = (\bigcap \mathcal{F}) \cap (\bigcap \mathcal{G})$.

Proof. Let $x \in \bigcap (\mathcal{F} \cup \mathcal{G})$. Thus, for all $A \in \mathcal{F} \cup \mathcal{G}$, we have that $x \in A$. In particular, if $A \in \mathcal{F}$, then $x \in A$ [as $\mathcal{F} \subseteq \mathcal{F} \cup \mathcal{G}$], and if $A \in \mathcal{G}$, then $x \in A$ [as $\mathcal{G} \subseteq \mathcal{F} \cup \mathcal{G}$]. The former means that $x \in \bigcap \mathcal{F}$, while the latter means that $x \in \cap \mathcal{G}$. Therefore, $x \in (\bigcap \mathcal{F}) \cap (\bigcap \mathcal{G})$. Hence, $\bigcap (\mathcal{F} \cup \mathcal{G}) \subseteq (\bigcap \mathcal{F}) \cap (\bigcap \mathcal{G})$.

Now, let $x \in (\bigcap \mathcal{F}) \cap (\bigcap \mathcal{G})$. Then, $x \in \bigcap \mathcal{F}$ and $x \in \bigcap \mathcal{G}$. Now, let $A \in \mathcal{F} \cup \mathcal{G}$. Then, either $A \in \mathcal{F}$ or $A \in \mathcal{G}$. If the former holds, then $x \in A$, as $x \in \bigcap \mathcal{F}$ [by definition of the intersection of a family], and if the latter holds, then, similarly, we have that $x \in A$.

Thus, for all $A \in \mathcal{F} \cap \mathcal{G}$, we have that $x \in A$. Therefore, $x \in \bigcap(\mathcal{F} \cup \mathcal{G})$ [by definition]. Hence, $(\bigcap \mathcal{F}) \cap (\bigcap \mathcal{G}) \subseteq \bigcap(\mathcal{F} \cup \mathcal{G}).$

Since we have both inclusions, the sets are equal.

5) [10 points] Let A be a set with partial order R and $a \in A$ the smallest element of A. Show that A has a unique minimal element. [What could this element be? In fact, we did this in class.]

Proof. This unique minimal element must be the smallest element. [I actually tell you that in the next problem!] So, that's what we will show.

[Remember, $x \in X$ is minimal if for all $y \in X$, yRx implies y = x. Also, $x \in X$ is the smallest element if for all $y \in X$, we have xRy.]

[a is minimal:] Let $b \in A$ and suppose that bRa. Since a is the least element, we have also that aRb [as $b \in A$]. Hence, since R is anti-symmetric, we have a = b, and hence a is minimal.

[a is the unique minimal:] Suppose $c \in A$ is minimal. Since a is the smallest element, we have that aRc. Thus, by definition of minimal, we have that c = a. Thus, every minimal element must be equal to a.

6) [12 points] Given $n \in \{1, 2, 3, 4, ...\}$, let (0, 1/n) be [as usual in Calculus] the open interval of \mathbb{R} given by $(0, 1/n) = \{x \in \mathbb{R} : 0 < x < 1/n\}$. Let

$$\mathcal{F} = \{\{0\}\} \cup \{(0, 1/n) : n \in \{1, 2, 3, 4, \ldots\}\}$$
$$= \{\{0\}, (0, 1), (0, 1/2), (0, 1/3), (0, 1/4), \ldots\},\$$

and consider the partial order in \mathcal{F} given by containment [as usual for sets].

(a) Show that $\{0\}$ is a minimal element of \mathcal{F} .

Proof. Suppose that $A \in \mathcal{F}$ is such that $A \subseteq \{0\}$. [We need to show $A = \{0\}$.] Then, since A has only one element, either $A = \emptyset$ or $A = \{0\}$. But the former cannot occur, as $\emptyset \notin \mathcal{F}$.

[Another way: if $A \in \mathcal{F}$, $A \subseteq \{0\}$, but $A \neq \{0\}$, then A = (0, 1/n) for some n. But this is a contradiction, as $1/(2n) \in (0, 1/n)$, but $1/(2n) \notin \{0\}$.]

(b) Show that for any $n \in \{1, 2, 3, ...\}$, (0, 1/n) is not a minimal element of \mathcal{F} .

Proof. We have that
$$(0, 1/(n+1)) \subseteq (0, 1/n)$$
, but $(0, 1/(n+1)) \neq (0, 1/n)$.

(c) Show that \mathcal{F} has no smallest element. [Hint: Remember that if $A \in \mathcal{F}$ is a smallest element, then it is also a minimal element.]

Proof. Since the only minimal element is $\{0\}$ [as seen above], it would have to be the smallest element of \mathcal{F} has such an element. But $\{0\} \notin (0, 1/2)$, so it is not the smallest element. Thus, \mathcal{F} does not have a smallest element.

[Note: This shows that a set can have only one minimal element, but no smallest element.]

7) [10 points] Let R be the equivalence relation on \mathbb{R} given by aRb if $(a-b) \in \mathbb{Z}$. [You do not need to prove it is an equivalence relation.]

(a) Show that $[0]_R = \mathbb{Z}$. [Remember that $[0]_R$ is the equivalence class of 0 with respect to the relation R given above.]

Proof. We have:

$$x \in [0]_R \quad \text{iff} \quad x \in \{y \in \mathbb{R} : yR0\}$$
$$\text{iff} \quad x \in \{y \in \mathbb{R} : (y-0) \in \mathbb{Z}\}$$
$$\text{iff} \quad x \in \{y \in \mathbb{R} : y \in \mathbb{Z}\}$$
$$\text{iff} \quad x \in \mathbb{Z}.$$

Thus, $[0]_R = \mathbb{Z}$.

(b) Find a real number x with $0 \le x < 1$, such that $[2.31]_R = [x]_R$.

Solution. Remember: $[2.31]_R = [x]_R$ iff xR2.31.

We have that x = 0.31 is such that $0 \le 0.31 < 1$ and xR2.31, as $x - 2.31 = -2 \in \mathbb{Z}$.

- 8) [12 points] Let R be an equivalence relation on a set A.
 - (a) Show that both $\operatorname{Ran}(R)$ [the range of R] and $\operatorname{Dom}(R)$ [the domain of R] are equal to A.

Proof. Let $a \in A$. Since $(a, a) \in R$ [as R is reflexive], we have that $a \in \text{Dom}(R)$ and $a \in \text{Ran}(R)$. So, A is contained in both. Since both domain and range are subsets of A by definition, we have the equalities.

(b) Show that R^{-1} [the inverse relation] is equal to R.

Proof. Let $(a,b) \in R$. Since R is symmetric, we have that $(b,a) \in R$. Then, $(a,b) \in R^{-1}$ by definition of the inverse relation. Thus, $R \subseteq R^{-1}$.

Let $(a,b) \in R^{-1}$. Then, $(b,a) \in R$. Since R is symmetric, we have that $(a,b) \in R$. Thus, $R^{-1} \subseteq R$.

Since we have both inclusions, the sets must be equal.

(c) Show that $R \circ R$ [the composition] is also equal to R.

Proof. Let $(a, c) \in R \circ R$. Then, by definition, there is $b \in A$ such that $(a, b), (b, c) \in R$. Since R is transitive, this means that $(a, c) \in R$. Hence, $R \circ R \subseteq R$.

Now, let $(a, b) \in R$. Since R is reflexive, we have that $(a, a) \in R$. Since then $(a, a), (a, b) \in R$, we have [by definition of composition] that $(a, b) \in R \circ R$. Thus, $R \subseteq R \circ R$.

Since we have both inclusions, the sets must be equal.

9) [10 points] Prove that for $n \ge 0$ we have

$$0 \cdot 1 + 1 \cdot 2 + 2 \cdot 3 + \dots + n \cdot (n+1) = \frac{n(n+1)(n+2)}{3}.$$

Proof. We prove it by induction on n. For n = 0 we have that:

$$0\cdot 1 = 0 = \frac{0\cdot 1\cdot 2}{3}.$$

Now assume that

$$0 \cdot 1 + 1 \cdot 2 + 2 \cdot 3 + \dots + n \cdot (n+1) = \frac{n(n+1)(n+2)}{3}.$$

Then,

$$0 \cdot 1 + 1 \cdot 2 + \dots + n \cdot (n+1) + (n+1) \cdot (n+2)$$

= $\frac{n(n+1)(n+2)}{3} + (n+1)(n+2)$
= $\left(\frac{n}{3} + 1\right)(n+1)(n+2)$
= $\left(\frac{n+3}{3}\right)(n+1)(n+2)$
= $\frac{(n+1)(n+2)(n+3)}{3}$.

Hence, the formula works for (n + 1), which finishes the induction.

10) [10 points] Remember that the Fibonacci sequence is given by:

$$F_0 = 0,$$
 $F_1 = 1,$
 $F_n = F_{n-2} + F_{n-1}, \text{ for } n \ge 2.$

Consider now the recursively defined sequence given by

$$a_0 = 0,$$
 $a_1 = 1,$ $a_2 = 1,$
 $a_n = \frac{1}{2}a_{n-3} + \frac{3}{2}a_{n-2} + \frac{1}{2}a_{n-1},$ for $n \ge 3.$

Prove that $a_n = F_n$ for all $n \ge 0$.

[Hint: $\frac{3}{2}a_{n-2} = \frac{1}{2}a_{n-2} + a_{n-2}$.]

Proof. We prove it by [strong] induction on n. We need three first steps:

$$a_0 = 0 = F_0,$$
 $a_1 = 1 = F_1,$ $a_2 = 1 = 1 + 0 = F_2.$

Assume now that for some $n \ge 2$ and all $k \le n$ we have $a_k = F_k$. Then:

$$\begin{aligned} a_{n+1} &= \frac{1}{2}a_{n-2} + \frac{3}{2}a_{n-1} + \frac{1}{2}a_n & [\text{recursive formula (as } n+1 \ge 3)] \\ &= \frac{1}{2}F_{n-2} + \frac{3}{2}F_{n-1} + \frac{1}{2}F_n & [\text{by ind. hyp.}] \\ &= \frac{1}{2}F_{n-2} + \frac{1}{2}F_{n-1} + F_{n-1} + \frac{1}{2}F_n & [\text{as in the hint}] \\ &= \frac{1}{2}(F_{n-2} + F_{n-1}) + F_{n-1} + \frac{1}{2}F_n & [\text{factor } 1/2] \\ &= \frac{1}{2}F_n + F_{n-1} + \frac{1}{2}F_n & [\text{recursive formula for } F_n] \\ &= F_n + F_{n-1} & [\text{add } (1/2)F_n's] \\ &= F_{n+1} & [\text{recursive formula for } F_{n+1}] \end{aligned}$$

Thus, the formula holds for n + 1, finishing the proof.