1) [15 points] Suppose that A, B and C are sets such that $A \subseteq B \backslash C$. Show that $A \cap C=\varnothing$.

Proof. Suppose that $x \in A \cap C$. [We need to derive a contradiction!] Then $x \in A$ and $x \in C$. But, since $x \in A$ and $A \subseteq B \backslash C$, we have that $x \in B \backslash C$, i.e., $x \in B$ and $x \notin C$. But we also have $x \in C$, and hence we have a contradiction.
2) [15 points] Let B be a set and $\mathcal{F} \subseteq \mathscr{P}(B)$. Show that $\bigcup \mathcal{F} \subseteq B$.

Proof. Let $x \in \bigcup \mathcal{F}$. So, there is $A \in \mathcal{F}$ such that $x \in A$. Since $\mathcal{F} \subseteq \mathscr{P}(B)$, we have that $A \in \mathscr{P}(B)$, i.e., $A \subseteq B$. But, $x \in A$ and $A \subseteq B$ implies that $x \in B$.
Since $x \in \bigcup \mathcal{F}$ was arbitrary, we have that $\bigcup \mathcal{F} \subseteq B$.
3) [15 points] Let x be an integer. Show that there exists an integer k such that either $x^{2}=4 k$ or $x^{2}=4 k+1$. [Hint: Remember that x is even if there is an integer n such that $x=2 n$ and it is odd if there is an integer n such that $x=2 n+1$.]

Proof. We break the proof in cases: x even and x odd.
Suppose first that x is even. Then, $x=2 n$ for some integer n. Therefore, $x^{2}=(2 n)^{2}=4 n^{2}$. Since n^{2} is an integer [as it is a square of an integer] we have that $x^{2}=4 k$ for some integer k, namely $k=n^{2}$.
Suppose now that x is odd. Then, $x=2 n+1$ for some integer n. Then, $x^{2}=(2 n+1)^{2}=$ $4 n^{2}+4 n+1=4\left(n^{2}+n\right)+1$. Since n is an integer, so is $n^{2}+n$. Thus, $x^{2}=4 k+1$, where $k=n^{2}+n$ is an integer.
4) [15 points] Let A, B, C and D be non-empty sets. Prove that if $A \times B \subseteq C \times D$ then $A \subseteq C$ and $B \subseteq D$.

Proof. Since A and B are not empty, there is $a \in A$ and $b \in B$. [We need to show that $a \in C$ and $b \in D$, as those were arbitrary.] Then, $(a, b) \in A \times B$, by definition of Cartesian product. Since $A \times B \subseteq C \times D$, this means that $(a, b) \in C \times D$. Then, by definition of Cartesian product again, we have that $a \in C$ and $b \in D$.

Note: The fact that the sets were not empty is essential here! For example, if $A=\{1,2\}$, $B=\varnothing, C=\{1\}$ and $D=\varnothing$, then $A \times B=\varnothing \subseteq \varnothing=C \times D$, but $\{1,2\}=A \nsubseteq C=\{1\}$.
5) Let R be the relation on $\mathbb{N}=\{0,1,2,3, \ldots\}$:

$$
R=\{(a, b) \in \mathbb{N} \times \mathbb{N}: b=3 a\}
$$

(a) [3 points] What is the domain of R ? No need to justify.

Solution. The domain is [all of] \mathbb{N}, as for every $n \in \mathbb{N}$, we have that $3 n \in \mathbb{N}$ and so $(n, 3 n) \in R$.
(b) [3 points] What is the range of R ? No need to justify.

Solution. The range is $S=\{0,3,6,9,12, \ldots\}$, i.e., non-negative multiples of 3. Indeed, if $m \in \operatorname{Ran}(R)$, then there is $n \in \mathbb{N}$ such that $(n, m) \in R$. Hence, $m=3 n$ and so $m \in S$. Therefore, $\operatorname{Ran}(R) \subseteq S$.

Conversely, if $m \in S$, then $m=3 n$ for some $n \in \mathbb{N}$. Thus, $(n, m) \in R$ and hence $m \in \operatorname{Ran}(R)$.

Thus, $S=\operatorname{Ran}(R)$.
(c) [3 points] What is the range of $R \circ R$? No need to justify.

Solution. It is $\{0,9,18,27, \ldots\}$, i.e., multiples of 9 . [Can you prove it?]
(d) [3 points] Give three different elements of R^{-1}. No need to justify.

Solution. Any three elements of the form $(3 n, n)$, where $n \in \mathbb{N}$. For example, $(0,0)$, $(3,1)$ and $(6,2)$.
(e) [13 points] Check if R is each reflexive, symmetric and transitive? Justify each answer with proofs [in the affirmative case] or counter-examples [in the negative case].

Solution. It is not reflexive, as, for instance, $(1,1) \notin R[$ as $1 \neq 3=3 \cdot 1]$.
It is not symmetric, as, for instance, $(1,3) \in R$, but $(3,1) \notin R$ as $1 \neq 9=3 \cdot 3]$.
It is not transitive, as, for instance, $(1,3)$ and $(3,9)$ are in R, but $(1,9)$ is not [as $9 \neq 3=3 \cdot 1]$.
6) [15 points] Suppose that R_{1} and R_{2} are symmetric relations on A. Prove that $R_{1} \cup R_{2}$ is also symmetric.

Proof. Let $(x, y) \in R_{1} \cup R_{2}$. [We need to prove that $(y, x) \in R_{1} \cup R_{2}$.] This means that either $(x, y) \in R_{1}$ or $(x, y) \in R_{2}$. Since both are symmetric, we have that either $(y, x) \in R_{1}$ [in the case that $\left.(x, y) \in R_{1}\right]$ or $(y, x) \in R_{2}$ [in the case that $\left.(x, y) \in R_{2}\right]$. Thus, [by definition of union] we have that $(y, x) \in R_{1} \cup R_{2}$.

