1) [15 points] Suppose that A, B and C are sets such that $A \subseteq B \setminus C$. Show that $A \cap C = \emptyset$.

Proof. Suppose that $x \in A \cap C$. [We need to derive a contradiction!] Then $x \in A$ and $x \in C$. But, since $x \in A$ and $A \subseteq B \setminus C$, we have that $x \in B \setminus C$, i.e., $x \in B$ and $x \notin C$. But we also have $x \in C$, and hence we have a contradiction.

2) [15 points] Let B be a set and $\mathcal{F} \subseteq \mathscr{P}(B)$. Show that $\bigcup \mathcal{F} \subseteq B$.

Proof. Let $x \in \bigcup \mathcal{F}$. So, there is $A \in \mathcal{F}$ such that $x \in A$. Since $\mathcal{F} \subseteq \mathscr{P}(B)$, we have that $A \in \mathscr{P}(B)$, i.e., $A \subseteq B$. But, $x \in A$ and $A \subseteq B$ implies that $x \in B$. Since $x \in \bigcup \mathcal{F}$ was arbitrary, we have that $\bigcup \mathcal{F} \subseteq B$.

3) [15 points] Let x be an integer. Show that there exists an integer k such that either $x^2 = 4k$ or $x^2 = 4k + 1$. [Hint: Remember that x is even if there is an integer n such that x = 2n and it is odd if there is an integer n such that x = 2n + 1.]

Proof. We break the proof in cases: x even and x odd.

Suppose first that x is even. Then, x = 2n for some integer n. Therefore, $x^2 = (2n)^2 = 4n^2$. Since n^2 is an integer [as it is a square of an integer] we have that $x^2 = 4k$ for some integer k, namely $k = n^2$.

Suppose now that x is odd. Then, x = 2n + 1 for some integer n. Then, $x^2 = (2n + 1)^2 = 4n^2 + 4n + 1 = 4(n^2 + n) + 1$. Since n is an integer, so is $n^2 + n$. Thus, $x^2 = 4k + 1$, where $k = n^2 + n$ is an integer.

4) [15 points] Let A, B, C and D be non-empty sets. Prove that if $A \times B \subseteq C \times D$ then $A \subseteq C$ and $B \subseteq D$.

Proof. Since A and B are not empty, there is $a \in A$ and $b \in B$. [We need to show that $a \in C$ and $b \in D$, as those were arbitrary.] Then, $(a, b) \in A \times B$, by definition of Cartesian product. Since $A \times B \subseteq C \times D$, this means that $(a, b) \in C \times D$. Then, by definition of Cartesian product again, we have that $a \in C$ and $b \in D$.

Note: The fact that the sets were not empty is essential here! For example, if $A = \{1, 2\}$, $B = \emptyset$, $C = \{1\}$ and $D = \emptyset$, then $A \times B = \emptyset \subseteq \emptyset = C \times D$, but $\{1, 2\} = A \nsubseteq C = \{1\}$.

5) Let R be the relation on $\mathbb{N} = \{0, 1, 2, 3, \ldots\}$:

$$R = \{(a, b) \in \mathbb{N} \times \mathbb{N} : b = 3a\}.$$

(a) [3 points] What is the domain of R? No need to justify.

Solution. The domain is [all of] \mathbb{N} , as for every $n \in \mathbb{N}$, we have that $3n \in \mathbb{N}$ and so $(n, 3n) \in \mathbb{R}$.

(b) [3 points] What is the range of R? No need to justify.

Solution. The range is $S = \{0, 3, 6, 9, 12, ...\}$, i.e., non-negative multiples of 3. Indeed, if $m \in \text{Ran}(R)$, then there is $n \in \mathbb{N}$ such that $(n, m) \in R$. Hence, m = 3n and so $m \in S$. Therefore, $\text{Ran}(R) \subseteq S$. Conversely, if $m \in S$, then m = 3n for some $n \in \mathbb{N}$. Thus, $(n, m) \in R$ and hence $m \in \text{Ran}(R)$. Thus, S = Ran(R).

(c) [3 points] What is the range of $R \circ R$? No need to justify.

Solution. It is $\{0, 9, 18, 27, \ldots\}$, i.e., multiples of 9. [Can you prove it?]

(d) [3 points] Give three different elements of R^{-1} . No need to justify.

Solution. Any three elements of the form (3n, n), where $n \in \mathbb{N}$. For example, (0, 0), (3, 1) and (6, 2).

(e) [13 points] Check if R is each reflexive, symmetric and transitive? Justify each answer with proofs [in the affirmative case] or counter-examples [in the negative case].

Solution. It is not reflexive, as, for instance, $(1, 1) \notin R$ [as $1 \neq 3 = 3 \cdot 1$]. It is not symmetric, as, for instance, $(1, 3) \in R$, but $(3, 1) \notin R$ [as $1 \neq 9 = 3 \cdot 3$]. It is not transitive, as, for instance, (1, 3) and (3, 9) are in R, but (1, 9) is not [as $9 \neq 3 = 3 \cdot 1$]. 6) [15 points] Suppose that R_1 and R_2 are symmetric relations on A. Prove that $R_1 \cup R_2$ is also symmetric.

Proof. Let $(x, y) \in R_1 \cup R_2$. [We need to prove that $(y, x) \in R_1 \cup R_2$.] This means that either $(x, y) \in R_1$ or $(x, y) \in R_2$. Since both are symmetric, we have that either $(y, x) \in R_1$ [in the case that $(x, y) \in R_1$] or $(y, x) \in R_2$ [in the case that $(x, y) \in R_2$]. Thus, [by definition of union] we have that $(y, x) \in R_1 \cup R_2$.