MATH 552

Contents

1. Algebraic Extensions	1
1.1. Finite and Algebraic Extensions	1
1.2. Algebraic Closure	5
1.3. Splitting Fields	7
1.4. Separable Extensions	8
1.5. Inseparable Extensions	10
1.6. Finite Fields	13
2. Galois Theory	14
2.1. Galois Extensions	14
2.2. Examples and Applications	17
2.3. Roots of Unity	20
2.4. Linear Independence of Characters	23
2.5. Norm and Trace	24
2.6. Cyclic Extensions	25
2.7. Solvable and Radical Extensions	26
Index	28

1. Algebraic Extensions

1.1. Finite and Algebraic Extensions.

Definition 1.1.1. Let 1_F be the multiplicative unity of the field F.

- (1) If $\sum_{i=1}^{n} 1_F \neq 0$ for any positive integer n, we say that F has *characteristic* 0.
- (2) Otherwise, if p is the smallest positive integer such that $\sum_{i=1}^{p} 1_F = 0$, then F has *characteristic* p. (In this case, p is necessarily prime.)
- (3) We denote the characteristic of the field by char(F).

- (4) The prime field of F is the smallest subfield of F. (Thus, if char(F) = p > 0, then the prime field of F is $\mathbb{F}_p \stackrel{\text{def}}{=} \mathbb{Z}/p\mathbb{Z}$ (the filed with p elements) and if char(F) = 0, then the prime field of F is \mathbb{Q} .)
- (5) If F and K are fields with $F \subseteq K$, we say that K is an *extension* of F and we write K/F. F is called the *base field*.
- (6) The degree of K/F, denoted by $[K : F] \stackrel{\text{def}}{=} \dim_F K$, i.e., the dimension of K as a vector space over F. We say that K/F is a finite extension (resp., infinite extension) if the degree is finite (resp., infinite).
- (7) α is algebraic over F if there exists a polynomial $f \in F[X] \{0\}$ such that $f(\alpha) = 0$.

Definition 1.1.2. If F is a field, then

$$F(\alpha) \stackrel{\text{def}}{=} \left\{ \frac{f(\alpha)}{g(\alpha)} : f, g \in F[X] \text{ and } g(\alpha) \neq 0 \right\},\$$

is the smallest extension of F containing α . (Hence α is algebraic over F if, and only if, $F[\alpha] = F(\alpha)$.)

In the same way,

$$F(\alpha_1, \dots, \alpha_n) \stackrel{\text{def}}{=} \left\{ \frac{f(\alpha_1, \dots, \alpha_n)}{g(\alpha_1, \dots, \alpha_n)} : f, g \in F[X_1, \dots, X_n] \text{ and } g(\alpha_1, \dots, \alpha_n) \neq 0 \right\}$$
$$= F(\alpha_1, \dots, \alpha_{n-1})(\alpha_n)$$

is the smallest extension of F containing $\{\alpha_1, \ldots, \alpha_n\}$.

Definition 1.1.3. If K/F is a finite extension and $K = F[\alpha]$, then α is called a *primitive element* of K/F.

Proposition 1.1.4. For any $f \in F[X] - \{0\}$ there exists an extension K/F such that f has a root in K. (E.g., $K \stackrel{\text{def}}{=} F[X]/(g)$, where g is an irreducible factor of f.)

Theorem 1.1.5. If $p(X) \in F[X]$ is irreducible of degree $n, K \stackrel{\text{def}}{=} F[X]/(p(X))$ and θ is the class of X in K, then θ is a root of p(X) in K, [K : F] = n and $\{1, \theta, \theta^2, \ldots, \theta^{n-1}\}$ is an F-basis of K.

Remark 1.1.6. Observe that $F[\theta]$ (polynomials over F evaluated at θ), where θ is a root of an irreducible polynomial p(X), is then a field. Observe that $1/\theta$ can be obtained with the extended Euclidean algorithm: if d(X) is the gcd(X, p(X)) and $d(X) = a(X) \cdot X + b(X) \cdot p(X)$, the $1/\theta = a(\theta)$.

Definition 1.1.7. If α is algebraic over F, then there is a *unique* monic irreducible over F that has α as a root, called the *irreducible polynomial* (or *minimal polynomial*) of α over F, and we shall denote it $\min_{\alpha,F}(X)$. [Note: $(\min_{\alpha,F}(X)) = \ker \phi$, where $\phi: F[X] \to F[\alpha]$ is the evaluation map.]

Corollary 1.1.8. If α is algebraic over F, then $F(\alpha) = F[\alpha] \cong F[x]/(\min_{\alpha,F})$, and $[F[\alpha]:F] = \deg \min_{\alpha,F}$.

Proposition 1.1.9. If K is a finite extension of F and α is algebraic over K, then α is algebraic over F and $\min_{\alpha,K}(X) \mid \min_{\alpha,F}(X)$.

Definition 1.1.10. Let $\phi : R \to S$ be a ring homomorphism. If $f(X) = a_n X^n + \dots + a_1 X + a_0$, then $f^{\phi} \stackrel{\text{def}}{=} \phi(a_n) X^n + \dots + \phi(a_1) X + \phi(a_0) \in S[X]$. [Note that $f \mapsto f^{\phi}$ is a ring homomorphism.]

Theorem 1.1.11. Let $\phi: F \to F'$ be an isomorphism, and $f \in F[X]$ be an irreducible polynomial. If α is a root of f in some extension of F and α' is a root of f^{ϕ} in some extension of F', then there exists an isomorphism $\Phi: F[\alpha] \to F'[\alpha']$ such that $\Phi(\alpha) = \alpha'$ and $\Phi|_F = \phi$.

Definition 1.1.12. K/F is an *algebraic extension* if every $\alpha \in K$ is algebraic over F.

Proposition 1.1.13. If $[K:F] < \infty$, then K/F is algebraic.

Remark 1.1.14. The converse is false. E.g., $\overline{\mathbb{Q}} \stackrel{\text{def}}{=} \{ \alpha \in \mathbb{C} : \alpha \text{ is algebraic over } \mathbb{Q} \}$ is an infinite algebraic extension of \mathbb{Q} .

Proposition 1.1.15. If L is a finite extension K and K is a finite extension of F, then

$$[L:F] = [L:K] \cdot [K:F].$$

Moreover, if $\{\alpha_1, \ldots, \alpha_n\}$ is an *F*-basis of *K* and $\{\beta_1, \ldots, \beta_m\}$ is a *K*-basis of *L*, then $\{\alpha_i \cdot \beta_j : i \in \{1, \ldots, n\} \text{ and } j \in \{1, \ldots, m\}\}$ is an *F*-basis of *L*.

Definition 1.1.16. $\{\alpha_1, \ldots, \alpha_n\}$ generates K/F if $K = F(\alpha_1, \ldots, \alpha_n)$ and K/F is finitely generated. (Not necessarily algebraic!)

Proposition 1.1.17. $[K:F] < \infty$ if, and only if, K is finitely generated over F by algebraic elements.

Corollary 1.1.18. Let K/F be an arbitrary extension, then

 $E \stackrel{\text{def}}{=} \{ \alpha \in K : \alpha \text{ is a algebraic over } F \},\$

is a subfield of K containing F.

Definition 1.1.19. If F and K are fields contained in the field \mathcal{F} , then the *composite* (or *compositum*) of F and K is the smallest subfield of \mathcal{F} containing F and K, and is denoted by FK.

Proposition 1.1.20. (1) In general, we have:

$$FK = \left\{ \frac{\alpha_1 \beta_1 + \dots + \alpha_m \beta_m}{\gamma_1 \delta_1 + \dots + \gamma_n \delta_n} : \alpha_i, \gamma_i \in F; \beta_j, \delta_j \in K; \gamma_1 \delta_1 + \dots + \gamma_n \delta_n \neq 0 \right\}$$

(2) If K_1/F and K_2/F are finite extensions, with $K_1 = F[\alpha_1, \ldots, \alpha_m]$ and $K_2 = F[\beta_1, \ldots, \beta_n]$, then $K_1 K_2 = F[\alpha_1, \ldots, \alpha_m, \beta_1, \ldots, \beta_n]$, and $[K_1 K_2 : F] \leq [K_1 : F] \cdot [K_2 : F]$.

Definition 1.1.21. Let C be a class of field extensions. We say that C is *distinguished* if the following three conditions are satisfied:

(1) Let $F \subseteq K \subseteq L$. Then, L/F is in \mathcal{C} if, and only if, L/K and K/F are in \mathcal{C} .

- (2) If K_1 and K_2 are extensions of F, both contained in \mathcal{F} , then if K_1/F is in \mathcal{C} , then $K_1 K_2/K_2$ is also in \mathcal{C} .
- (3) If K_1 and K_2 are extensions of F, both contained in \mathcal{F} , then if K_1/F and K_2/F are in \mathcal{C} , then $K_1 K_2/F$ is also in \mathcal{C} . [Note that this follows from the previous two.]

Definition 1.1.22. Let C be a class of field extensions. We say that C is quasidistinguished if the following three conditions are satisfied:

- (1) Let $F \subseteq K \subseteq L$. Then, if L/F is in \mathcal{C} then L/K in \mathcal{C} .
- (2) Same as (2) of distinguished.
- (3) Same as (3) of distinguished.

Remark 1.1.23. The above definition is *not* standard.

Proposition 1.1.24. The classes of algebraic extensions and finite extensions are distinguished.

1.2. Algebraic Closure.

Definition 1.2.1. Let K and L be extensions of F.

- (1) An embedding (i.e., an injective homomorphism) $\phi : K \to L$ is over F if $\phi|_F = \mathrm{id}_F$.
- (2) If E/K and $\psi : E \to L$ is also an embedding, we say that ψ is over ϕ , or is an extension of ϕ , if $\psi|_K = \phi$.

Remark 1.2.2. Remember that if $\phi: F \to F'$ is field homomorphism, then ϕ is either injective or $\phi \equiv 0$.

Definition 1.2.3. An algebraic closure of F is an algebraic extension K in which any polynomial in F[X] splits [i.e., can be written as a product of linear factors] in K[X]. We say that F is algebraically closed if it is an algebraic closure of itself. **Lemma 1.2.4.** Let K/F be algebraic. If $\phi : K \to K$ is an embedding over F, then ϕ is an automorphism.

Lemma 1.2.5. Let F and K be subfields of \mathcal{F} and $\phi : \mathcal{F} \to L$ be an embedding into some field L. Then $\phi(F K) = \phi(F) \phi(K)$.

Theorem 1.2.6. (1) For any field F, there exists an algebraic closure of F.
(2) An algebraic closure of F is algebraically closed.

Definition 1.2.7. If

$$f(X) = \sum_{i=0}^{n} a_i X^i \in F[X],$$

then the *formal derivative* of f is

$$f'(X) = \sum_{i=0}^{n} i a_i X^{i-1}.$$

Remark 1.2.8. The same formulas from calculus still hold (product rule, chain rule, etc.).

Lemma 1.2.9. Let $f \in F[X]$ and α a root of f. Then α is a multiple root if, and only if, $f'(\alpha) = 0$.

Lemma 1.2.10. Let $\phi : F \to F'$ be an embedding, $c, a_1, \ldots, a_k \in F$, and $f \stackrel{\text{def}}{=} c(X - a_1) \cdots (X - a_k) \in F[X]$. Then, $f^{\phi}(X) = \phi(c)(X - \phi(a_1)) \cdots (X - \phi(a_k))$.

Theorem 1.2.11. Let $f \in F[X]$ be an irreducible polynomial. If f splits in K as $f = c(X - \alpha_1)^{n_1} \cdots (X - \alpha_k)^{n_k}$, with the α_i 's distinct, then $n_1 = \cdots = n_k$. [So, f is a n_1 -th power of a polynomial with simple roots.] Moreover, if K' is any other field where f splits, and n is the common exponent above [e.g, $n = n_1$], we must have $f = c(X - \alpha'_1)^n \cdots (X - \alpha'_k)^n$ in K'[X]. [I.e., the number of distinct roots k and the exponent n are the same.]

Corollary 1.2.12. If $f \in F[x]$ is irreducible and char(F) = 0 [or $f' \neq 0$], then f has only simple roots [in any extension of F].

- **Theorem 1.2.13.** (1) If $\phi : F \to K$ is an embedding of F, K is algebraically closed and α is algebraic over F, then the number of extensions of ϕ to $F[\alpha]$ is equal to the number of distinct roots of $\min_{\alpha,F}(X)$.
 - (2) If K/F is an algebraic extension, φ : F → L, with L algebraically closed, then there exists an extension ψ : K → L of φ. Moreover, if K is also algebraically closed and L/φ(F) is algebraic, then ψ is an isomorphism. [Hence the algebraic closure of a field is unique up to isomorphism, and we denote the algebraic closure of F by F.]
 - (3) If K/F is an algebraic extension and K is an algebraic closure of K, then it is also an algebraic closure of F. Conversely, if F is an algebraic closure of F and K' is the image of the embedding of K into F, then F is an algebraic closure of K'.

1.3. Splitting Fields.

Definition 1.3.1. K is a splitting field of $f \in F[X]$ if f(X) splits in K, but not in any proper subfield of K. In particular if f splits in an extension of F as $f = c(X - \alpha_1) \cdots (X - \alpha_n)$, then $F[\alpha_1, \ldots, \alpha_n]$ is a splitting field of f.

Theorem 1.3.2. If K_1/F and K_2/F are two splitting fields of $f \in F[X]$ [or of the same families of polynomials] in different algebraic closure [so that they are distinct], then there exists an isomorphism between K_1 and K_2 over F [induced by the isomorphism of the algebraic closures].

Remark 1.3.3. If \overline{F} is an algebraic closure of F and $\alpha_1, \ldots, \alpha_n \in \overline{F}$ are all the roots of f(X), then the splitting field of F is $F[\alpha_1, \ldots, \alpha_n]$.

Definition 1.3.4. *K* is normal extension of *F* is it is algebraic over *F* and any embedding $\phi: K \to \overline{K} = \overline{F}$ over *F* is an automorphism of *K*.

Theorem 1.3.5. Let $F \subseteq K \subseteq \overline{F}$. The following are equivalent:

- (1) K is normal.
- (2) K is a splitting field of a family of polynomials.
- (3) Every polynomials in F[X] that has a root in K, splits in K[X].

Theorem 1.3.6. The class of normal extensions is quasi-distinguished [but not distinguished]. Also, if K_1/F and K_2/F are normal, then so is $K_1 \cap K_2/F$.

Proposition 1.3.7. If [K : F] = 2, then K/F is normal.

- Remark 1.3.8. (1) $\mathbb{Q}(\sqrt{2})/\mathbb{Q}$ and $\mathbb{Q}(\sqrt{2})/\mathbb{Q}(\sqrt{2})$ are normal extensions, but $\mathbb{Q}(\sqrt[4]{2})/\mathbb{Q}$ is not normal.
 - (2) $\mathbb{Q}(\zeta_3, \sqrt[3]{2})/\mathbb{Q}$, where $\zeta_3 = e^{2\pi i/3}$, is normal, and $\mathbb{Q} \subseteq \mathbb{Q}(\sqrt[3]{2}) \subseteq \mathbb{Q}(\zeta_3, \sqrt[3]{2})$, but $\mathbb{Q}(\sqrt[3]{2})/\mathbb{Q}$ is *not* normal.

1.4. Separable Extensions.

Lemma 1.4.1. Let $\sigma : F \to L$ and $\tau : F \to L'$ be embeddings of F into algebraically closed fields, and let K/F be an algebraic extension. Then, the number [or cardinality] of extensions of σ to K is the same as the number of extensions of τ to K.

Definition 1.4.2. (1) Let K/F be a finite extension and \overline{F} be an algebraic closure of F. Then, the *separable degree* of K/F is

 $[K:F]_{s} \stackrel{\text{def}}{=} \text{number of embeddings } \phi: K \to \overline{F} \text{ over } F.$

- (2) A polynomial $f \in F[X]$ is a separable polynomial if it has no multiple roots.
- (3) Let α be algebraic over F. Then α is *separable* over F if $\min_{\alpha,F}(X)$ is separable.
- (4) K/F is a separable extension if every element of K is separable over F.

Remark 1.4.3. If $\phi: F \to L$ is embedding of F and L is algebraic closed, then

 $[K:F]_{s} =$ number of extensions $\psi: K \to L$ of ϕ .

Theorem 1.4.4. If L/K and K/F are algebraic extensions, then

$$[L:F]_{\mathbf{s}} = [L:K]_{\mathbf{s}} \cdot [K:F]_{\mathbf{s}}.$$

Moreover, if $[L:F] < \infty$, then

$$[L:F]_{\rm s} \le [L:F],$$

and K/F is separable if, and only if, $[L:F]_s = [L:F]$.

Theorem 1.4.5. If $K = F[\{\alpha_i : i \in I\}]$, where I is a set of indices and α_i is separable over F for all $i \in I$, then K/F is separable.

Theorem 1.4.6. The class of separable extensions is distinguished.

Proposition 1.4.7. Let K be a finite extension of F inside \overline{F} . Then the smallest extension of K which is normal over F is $L \stackrel{\text{def}}{=} \phi_1(K) \dots \phi_n(K)$, where $\{\phi_1, \dots, \phi_n\}$ are all the embeddings of K into \overline{F} over F. (The $\phi_i(K)$'s are called the conjugates of K.) Moreover, if K/F is separable, then L is also separable over F.

Definition 1.4.8. (1) The field L in the proposition above is called the *normal* closure of K/F.

(2) Let

 $F^{\rm s} \stackrel{\rm def}{=}$ compositum of all separable extensions of F.

 F^{s} is called the *separable closure* of all F.

(3) If $K = F[\alpha]$, then K is said to be a simple extension of F.

Theorem 1.4.9 (Primitive Element Theorem). If $[F : F] < \infty$, then K/F has a primitive element if, and only if, there are finitely many intermediate fields (i.e., fields L such that $F \subseteq L \subseteq K$). Moreover, if K/F is (finite and) separable, then K/F has a primitive element.

Lemma 1.4.10. If $f \in F[X]$ is irreducible, then f has distinct roots if, and only if, f'(X) is a non-zero polynomial.

Proposition 1.4.11. (1) α is separable over F if, and only if, $(\min_{\alpha,F})' \neq 0$.

- (2) If char(F) = 0, then any extension of F is separable.
- (3) Let char(F) = p > 0. Then α is inseparable over F if, and only if, $\min_{\alpha,F} \in F[X^p]$. (And thus, $\min_{\alpha,F}$ is a p-power in $\overline{F}[X]$.)

1.5. Inseparable Extensions.

Definition 1.5.1. An algebraic extension K/F is *inseparable* if it is not separable. (Note that if K/F is inseparable, then char(F) = p > 0.)

Proposition 1.5.2. If $F[\alpha]/F$ is finite and inseparable, then $\min_{\alpha,F}(X) = f(X^{p^k})$, where $p = \operatorname{char}(F)$ [necessarily positive], for some positive integer k and separable and irreducible polynomial $f \in F[X]$. Moreover, $[F[\alpha] : F]_s = \deg f$, $[F[\alpha] : F] = p^k \cdot \deg f$, and α^{p^k} is separable over F.

Corollary 1.5.3. If K/F is finite, then $[K : F]_s | [K : F]$. If char(F) = 0, then the quotient is 1, and if char(F) = p > 0, then the quotient is a power of p.

Definition 1.5.4. Let K/F be a finite algebraic extension. The inseparable degree of K/F is

$$[K:F]_{\mathbf{i}} \stackrel{\text{def}}{=} \frac{[K:F]}{[K:F]_{\mathbf{s}}}.$$

Proposition 1.5.5. Let K/F be a finite algebraic extension. Then:

- (1) K/F is separable if, and only if, $[K:F]_i = 1$;
- (2) if E is an intermediate field, then $[K:F]_i = [K:E]_i \cdot [E:F]_i$.
- **Definition 1.5.6.** (1) Let α be algebraic over F, with $\operatorname{char}(F) = p$. We say that α is *purely inseparable* over F if $\alpha^{p^n} \in F$ for some positive integer n. [Thus, $\min_{\alpha,F} | X^{p^n} \alpha^{p^n} = (X \alpha)^{p^n}$.]
 - (2) An algebraic [maybe infinite] extension K/F is a purely inseparable extension if $[K:F]_s = 1$.

Proposition 1.5.7. An element α is purely inseparable if, and only if, $\min_{\alpha,F}(X) = X^{p^n} - a$ for some positive integer n and $a \in F$. [Observe that $a = \alpha^{p^n}$.]

Proposition 1.5.8. Let K/F be an algebraic extension. The following are equivalent:

- (1) K/F is purely inseparable [i.e., $[K:F]_s = 1$].
- (2) All elements of K are purely inseparable over F.
- (3) $K = F[\alpha_i : i \in I]$, for some set of indices I, with α_i purely inseparable over F.

Proposition 1.5.9. The class of purely inseparable extensions is distinguished.

Definition 1.5.10. (1) Let F be a field and G be a subgroup of Aut(F). Then:

$$F^G \stackrel{\text{def}}{=} \{ \alpha \in F : \phi(\alpha) = \alpha, \, \forall \phi \in G \},\$$

is the *fixed field* of G. (Note: it is a field.)

(2) The extension K/F is a *Galois extension* if it is normal and separable. In this case, the *Galois group* of K/F, denoted by Gal(K/F) is the group of automorphisms of K over F [i.e., automorphisms of K which fix F].

Remark 1.5.11. If K/F is Galois, then $\operatorname{Gal}(K/F)$ is equal to the set of embeddings of K into \overline{K} . Also, if K/F is finite, then K/F is Galois if, and only if, $|\operatorname{Aut}_F(K)| = [K:F]$, and so $|\operatorname{Gal}(K/F)| = [K:F]$.

Remark 1.5.12. Note that for any field extension K/F we have a group of automorphisms over F, which we denote by $\operatorname{Aut}_F(K)$. But, usually, the notation $\operatorname{Gal}(K/F)$ is reserved for Galois extensions only. [A few authors do use $\operatorname{Gal}(K/F)$ for $\operatorname{Aut}_F(K)$, though.]

Proposition 1.5.13. Let K/F be an algebraic extension. Then

$$K' \stackrel{\text{def}}{=} \{ x \in K : x \text{ is separable over } F \}$$

is a field [equal to the compositum of all separable extensions of F that are contained in K]. [So, it is clearly the maximal separable extension of F contained in K.] Then, K'/F is separable and K/K' is purely inseparable.

Corollary 1.5.14. (1) K/F is separable and purely inseparable, then K = F. (2) If α is separable and purely inseparable over F, then $\alpha \in F$.

Corollary 1.5.15. If K/F is normal, then the maximal separable extension of F contained in K [i.e., the K' in the proposition above] is normal over F. [Hence, K'/F is Galois.]

Corollary 1.5.16. If F/E and K/E are finite, with $F, K \subseteq \mathcal{F}$, with F/E separable and K/E purely inseparable, then

$$[F K : K] = [F : E] = [F K : E]_{s},$$
$$[F K : F] = [K : E] = [F K : E]_{i}.$$

Definition 1.5.17. Let F be a field [or a ring] of characteristic p, with p prime. The *Frobenius morphism* of F is the map

$$\begin{aligned} \sigma: F &\to F \\ x &\mapsto x^p. \end{aligned}$$

Corollary 1.5.18. Let K/F be a finite extension in characteristic p > 0 and σ be the Frobenius.

(1) If $K^{\sigma}F = K$, then K/F is separable, where

$$K^{\sigma} = \sigma(K) = \{ \sigma(x) : x \in K \}.$$

(2) If K/F is separable, then $K^{\sigma^n}F = K$ for any positive integer n.

Remark 1.5.19. (1) If $K = F[\alpha_1, \dots, \alpha_m]$, then $K^{\sigma^n} F = F[\alpha_1^{p^n}, \dots, \alpha_m^{p^n}]$.

(2) Notice that if K/F is an algebraic extension, we can always have an intermediate field K' such that K'/F is separable and K/K' is purely inseparable, but not always we can have a K" such that K"/F is purely inseparable and K/K" is separable. [For example, take F = F_p(s,t), with p > 2, and K = F[α], where α is a root of X^p - β and β is a root of X² - s X + t.]

The next proposition states that if K/F is normal, then there is such a K''.

Proposition 1.5.20. Let K/F be normal and $G \stackrel{\text{def}}{=} \operatorname{Aut}_F(K)$ [where $\operatorname{Aut}_F(K)$ is the set of automorphisms of K over F] and K^G be the fixed field of G [as in Definition 1.5.10]. Then K^G/F is purely inseparable and K/K^G is separable. [Hence, K/K^G is Galois.]

Moreover, if K' is the maximal separable extension of F contained in K, then $K = K' K^G$ and $K' \cap K^G = F$.

Definition 1.5.21. A field F is a *perfect field* if either char(F) = 0 or char(F) = p > 0 and the Frobenius $\sigma : F \to F$ is onto [or equivalently, every element of F has a p-th root]. [Note that σ is always injective, so σ is, in this case, an automorphism of F.]

Proposition 1.5.22. Every algebraic extension of a perfect field F is both perfect and separable over F.

1.6. Finite Fields.

Theorem 1.6.1. If F is a field with q [finite] elements, then:

- (1) char(F) = p > 0 and so $\mathbb{F}_p \subseteq F$;
- (2) $q = p^n$ for some positive integer n;
- (3) F is the splitting field of $X^q X$ (over \mathbb{F}_p);
- (4) any other field with q elements is isomorphic to F, and in a fixed algebraic closure of F_p, there exists only one field with q elements, usually denoted by F_q;
- (5) there exists $\xi \in F$, such that $F^{\times} = \langle \xi \rangle$;
- (6) for any positive integer r, there is a unique field with p^r elements in a fixed algebraic closure \$\bar{\mathbb{F}}_p\$ of \$\mathbb{F}_p\$, which is the unique extension of \$\mathbb{F}_p\$ of degree r in \$\bar{\mathbb{F}}_p\$.

Proposition 1.6.2. Any algebraic extension of a finite field Galois [i.e., it is both normal and separable].

Proposition 1.6.3. The set of automorphisms of \mathbb{F}_{p^r} is $\{id, \sigma, \sigma^2, \ldots, \sigma^{r-1}\}$, where σ is the Frobenius map. [Note that these are all automorphisms, and they are automorphisms over \mathbb{F}_{p} .]

Proposition 1.6.4. \mathbb{F}_{p^s} is an extension of \mathbb{F}_{p^r} if, and only if, $r \mid s$. In this case, the set of embeddings of \mathbb{F}_{p^s} into $\overline{\mathbb{F}}_p$ over \mathbb{F}_{p^r} [or equivalently, since normal, the set of automorphisms of \mathbb{F}_{p^s} over \mathbb{F}_{p^r}] is $\{\mathrm{id}, \sigma^r, \sigma^{2r}, \ldots, \sigma^{s-r}\}$, where σ is the Frobenius map. [In other words, $\mathrm{Gal}(\mathbb{F}_{p^s}/\mathbb{F}_{p^r}) = \langle \sigma^r \rangle$.]

Proposition 1.6.5. The algebraic closure $\overline{\mathbb{F}}_p$ is $\bigcup_{r>0} \mathbb{F}_{p^r}$. [Note that any finite union is contained in a single finite field.]

2. Galois Theory

2.1. Galois Extensions.

Proposition 2.1.1. Galois extensions form a quasi-distinguished class, and if K_1/F and K_2/F are Galois, then so is $K_1 \cap K_2/F$.

Theorem 2.1.2. Let K/F be a Galois extension and $G \stackrel{\text{def}}{=} \operatorname{Gal}(K/F)$. Then

- (1) $K^G = F;$
- (2) if E is an intermediate field ($F \subseteq E \subseteq K$), then K/E is also Galois;
- (3) the map $E \mapsto \operatorname{Gal}(K/E)$ is injective.

Corollary 2.1.3. Let K/F be a Galois extension and $G \stackrel{\text{def}}{=} \operatorname{Gal}(K/F)$. If E_i is an intermediate field and $H_i \stackrel{\text{def}}{=} \operatorname{Gal}(K/E_i)$, for i = 1, 2, then:

- (1) $H_1 \cap H_2 = \text{Gal}(K/E_1 E_2);$
- (2) if $H = \langle H_1, H_2 \rangle$ [i.e., H is the smallest subgroup of G containing H_1 and H_2], then $K^H = E_1 \cap E_2$.

Corollary 2.1.4. Let K/F be separable and **finite**, and L be the normal closure of K/F [i.e., the smallest normal extension of F containing K]. Then L/F is finite and Galois.

Lemma 2.1.5. Let K/F be a separable extension such that for all $\alpha \in K$, $[F[\alpha] : F] \leq n$, for some fixed n. Then $[K : F] \leq n$.

Theorem 2.1.6 (Artin). Let K be a field, G be a subgroup of Aut(K) with $|G| = n < \infty$, and $F \stackrel{\text{def}}{=} K^G$. Then K/F is Galois and G = Gal(K/F) (and [K : F] = n).

Corollary 2.1.7. Let K/F be Galois and finite and $G \stackrel{\text{def}}{=} \operatorname{Gal}(K/F)$. Then, for any subgroup H of G, $H = \operatorname{Gal}(K/K^H)$.

Remark 2.1.8. The above corollary is not true if the extension is infinite! The map $H \mapsto K^H$ is not injective! For example, $\overline{\mathbb{F}}_p/\mathbb{F}_p$ is Galois, the cyclic group H generated by the Frobenius is not the Galois group, and yet $K^H = \mathbb{F}_p$.

Lemma 2.1.9. Let K_1 and K_2 be two extensions of F with $\phi : K_1 \to K_2$ an isomorphism over F. Then $\operatorname{Aut}_F(K_2) = \phi \circ \operatorname{Aut}_F(K_1) \circ \phi^{-1}$.

Theorem 2.1.10. Let K/F be a Galois extension and $G \stackrel{\text{def}}{=} \operatorname{Gal}(K/F)$. If E is an intermediate extension, then E/F is normal [and thus Galois] if, and only if, $H \stackrel{\text{def}}{=} \operatorname{Gal}(K/E)$ is a normal subgroup of G. In this case, $\phi \mapsto \phi|_E$ induces an isomorphism between G/H and $\operatorname{Gal}(E/F)$.

Definition 2.1.11. An extension K/F is an Abelian extension (resp., a cyclic extension) if it is Galois and Gal(K/F) is Abelian (resp., cyclic).

Corollary 2.1.12. If K/F is Abelian (resp., cyclic), then for any intermediate field E, K/E and E/F are Abelian (resp., cyclic).

Theorem 2.1.13 (Fundamental Theorem of Galois Theory). Let K/F be finite and Galois, with $G \stackrel{\text{def}}{=} \text{Gal}(K/F)$. The results above gives: the map

$$\{subgroups of G\} \longrightarrow \{intermediate fields of K/F\}$$

$$H \longmapsto K^{H}$$

is a bijection with inverse

$$\{ intermediate fields of K/F \} \longrightarrow \{ subgroups of G \}$$
$$E \longmapsto \operatorname{Gal}(K/E).$$

Moreover an intermediate field E is Galois if, and only if, $H \stackrel{\text{def}}{=} \operatorname{Gal}(K/E)$ is normal in G, and $\operatorname{Gal}(E/F) \cong G/H$, induced by $\phi \mapsto \phi|_E$.

Remark 2.1.14. Note that the maps $H \mapsto K^H$ and $E \mapsto \operatorname{Gal}(K/E)$ are inclusion reversing, i.e., $H_1 \leq H_2$ implies $K^{H_1} \supseteq K^{H_2}$, and if $E_1 \subseteq E_2$, then $\operatorname{Gal}(K/E_1) \geq \operatorname{Gal}(K/E_2)$.

Theorem 2.1.15 (Natural Irrationalities). Let K/F be a Galois extension and L/Fbe an arbitrary extension, with $K, L \subseteq \mathcal{F}$ [so that we can consider the compositum LK]. Then KL is Galois over L and K is Galois over $K \cap L$. Moreover, if $G \stackrel{\text{def}}{=} \text{Gal}(K/F)$ and $H \stackrel{\text{def}}{=} \text{Gal}(KL/L)$, then for any $\phi \in H$, $\phi|_K \in G$ and $\phi \mapsto \phi|_K$ is an isomorphism between H and $\text{Gal}(K/K \cap L)$.

Corollary 2.1.16. If K/F is finite and Galois and L/F is an arbitrary extension, then [KL:L] | [K:F].

Remark 2.1.17. The above theorem does not hold for if K/F is not Galois. For example, $F \stackrel{\text{def}}{=} \mathbb{Q}$, $K \stackrel{\text{def}}{=} \mathbb{Q}(\sqrt[3]{2})$ and $L \stackrel{\text{def}}{=} \mathbb{Q}(\zeta_3\sqrt[3]{2})$, where $\zeta_3 = e^{2\pi i/3}$.

Theorem 2.1.18. Let K_1/F and K_2/F be Galois extensions with $K_1, K_2 \in \mathcal{F}$. Then $K_1 K_2/F$ is Galois. Moreover, if $G \stackrel{\text{def}}{=} \operatorname{Gal}(K_1 K_2/F)$, $G_1 \stackrel{\text{def}}{=} \operatorname{Gal}(K_1/F)$, $G_2 \stackrel{\text{def}}{=} \operatorname{Gal}(K_2/F)$ and

$$\begin{split} \Phi: G &\to G_1 \times G_2 \\ \phi &\mapsto (\phi|_{K_1}, \phi|_{K_2}), \end{split}$$

then Φ is injective and if $K_1 \cap K_2 = F$, then Φ is an isomorphism.

Corollary 2.1.19. If K_i/F is Galois and $G_i \stackrel{\text{def}}{=} \operatorname{Gal}(K_i/F)$ for $i = 1, \ldots, n$ and $K_{i+1} \cap (K_1 \dots K_i) = F$ for $i = 1, \ldots, (n-1)$, then $\operatorname{Gal}(K_1 \dots K_n/F) = G_1 \times \cdots \times G_n$.

Corollary 2.1.20. Let K/F be finite and Galois, with $G \stackrel{\text{def}}{=} \operatorname{Gal}(K/F) = G_1 \times \cdots \times G_n$, $H_i \stackrel{\text{def}}{=} G_1 \times \cdots \times G_{i-1} \times 1 \times G_{i+1} \times \cdots \times G_n$ and $K_i \stackrel{\text{def}}{=} K^{H_i}$. Then K_i/F is Galois with $\operatorname{Gal}(K_i/F) \cong G_i$, $K_{i+1} \cap (K_1 \dots K_i) = F$ and $K = K_1 \dots K_n$.

Corollary 2.1.21. Abelian extensions are quasi-distinguished [see Definition 1.1.22]. Moreover, if K is an Abelian extension of F and E is an intermediate field, then E/F is also Abelian. [Hence, intersections of Abelian extensions are also Abelian.]

Remark 2.1.22. Observe that, as with Galois extensions [and Abelian extensions are Galois by definition], we do not always have that if K/E and E/F are Abelian, then K/F is Abelian. For example, $\mathbb{Q}(\sqrt[4]{2})/\mathbb{Q}(\sqrt{2})$ and $\mathbb{Q}(\sqrt{2})/\mathbb{Q}$ are Abelian (since they are degree two extensions), but $\mathbb{Q}(\sqrt[4]{2})/\mathbb{Q}$ is not even Galois [since $X^4 - 2$ does not split in $\mathbb{Q}(\sqrt[4]{2})$].

2.2. Examples and Applications.

Definition 2.2.1. The Galois group of a separable polynomial $f \in F[X]$ is the Galois group of the splitting field of f over F. We will denote it by G_f or $G_{f,F}$.

- **Proposition 2.2.2.** (1) Let $f \in F[X]$ be a [not necessarily separable or irreducible] polynomial, K be its splitting field, and n be the number of distinct roots of f [in K]. Then, $G \stackrel{\text{def}}{=} \operatorname{Aut}_F(K)$ is a subgroup of the symmetric group S_n , seen as permutations of the roots of f. [In particular, any $\sigma \in G$ is determined by its values on the roots of f, and hence, if $\sigma \in G$ fixes all roots of f, then $\sigma = \operatorname{id}_K$.]
 - (2) If $f \in F[X]$ is irreducible [but not necessarily separable] and K, n, and G are as above, then G is a transitive subgroup of S_n [i.e., for all $i, j \in \{1, ..., n\}$, there is $\sigma \in G$ such that $\sigma(i) = j$.]
 - (3) Let K/F be Galois [and hence separable] with $G \stackrel{\text{def}}{=} \operatorname{Gal}(K/F)$, $\alpha \in K$,

$$\mathcal{O} \stackrel{\text{def}}{=} \{ \sigma(\alpha) : \sigma \in G \}$$

be the orbit of α by the action of G in K. Then, \mathcal{O} is finite, say, $\mathcal{O} = \{\alpha_1, \ldots, \alpha_k\}$, and

$$\min_{\alpha,F} = (x - \alpha_1) \cdots (x - \alpha_k).$$

Note that $|\mathcal{O}| \mid [K:F] = |G|$.

(4) Let K/F be finite and Galois with $G \stackrel{\text{def}}{=} \operatorname{Gal}(K/F)$, and let $\alpha \in K$. Then, $K = F[\alpha]$ if, and only if, the orbit of α by G has exactly [K : F] elements.

Proposition 2.2.3 (Quadratic Extensions).

- (1) If char(F) $\neq 2$ and [K : F] = 2, then there exists an $a \in F$ such that $K = F[\alpha]$, with $\min_{\alpha,F} = X^2 a$. Also, $\operatorname{Gal}(K/F) \cong \mathbb{Z}/2\mathbb{Z}$ and the nonidentity element is such that $\phi(\alpha) = -\alpha$.
- (2) If $f \in F[X]$ is a quadratic separable polynomial, then the splitting field of F has degree two over F, $G_f \cong \mathbb{Z}/2\mathbb{Z}$ and the non-zero element of G_f is takes a root of f to the other root.

Definition 2.2.4. Let $f \in F[X]$, such that

$$f(X) = \prod_{i=1}^{n} (X - \alpha_i)$$

Then the *discriminant* of f is defined as

$$\Delta_f = \Delta \stackrel{\text{def}}{=} \prod_{i < j} (\alpha_i - \alpha_j)^2.$$

Proposition 2.2.5. For any $f \in F[X]$, $\Delta_f \in F$. In particular if $f = aX^2 + bX + c$, then $\Delta_f = b^2 - 4ac$ and if $f = X^3 + aX + b$, then $\Delta_f = -4a^3 - 27b^2$.

Proposition 2.2.6 (Cubic Extensions and Polynomials).

- (1) If [K:F] = 3, then for any $\alpha \in K F$, we have $K = F[\alpha]$.
- (2) If char(F) $\neq 3$ and $f \in F[X]$ is irreducible of degree 3, say $f(X) = X^3 + aX^2 + bX + c$, then the splitting field of f is the same as the splitting field of the polynomial $\tilde{f}(X) \stackrel{\text{def}}{=} f(X a/3) = X^3 + \tilde{a}X + \tilde{b}$. [Hence $G_f = G_{\tilde{f}}$.]
- (3) If the splitting field of a separable $f \in F[X]$ is of degree 3, then $G_f \cong \mathbb{Z}/3\mathbb{Z}$ and if $\alpha_1, \alpha_2, \alpha_3$ are the [distinct] roots of f, then $G_f = \langle \phi \rangle$, where $\phi(\alpha_1) = \alpha_2$ and $\phi(\alpha_2) = \alpha_3$ and $\phi(\alpha_3) = \alpha_1$. Note that in this case, $G_f \cong A_3$, where A_n is the alternating subgroup of S_n [i.e., the subgroup of even permutations].

- (4) If the splitting field of a separable $f \in F[X]$ is not of degree 3, then $G_f \cong S_3$ [and hence G_f can permute the roots of f in all possible ways].
- (5) Let $f = \prod_{i=1}^{3} (X \alpha_i) \in F[X]$ and

$$\delta \stackrel{\text{def}}{=} (\alpha_1 - \alpha_2)(\alpha_1 - \alpha_3)(\alpha_2 - \alpha_3).$$

[Thus, $\delta^2 = \Delta_f$.] If f is irreducible in F[X], $\Delta_f \neq 0$ [i.e., f is separable] and char(F) $\neq 2$, then $G_f \cong S_3$ if, and only if, $\delta \notin F$ [or equivalently, Δ_f is not a square in F.] [Note that if $\delta \notin F$, then $F[\delta]/F$ is a degree two extension contained in the splitting field of f.]

Examples 2.2.7. From the above, we can deduce:

(1) If $f \stackrel{\text{def}}{=} X^3 - X + 1 \in \mathbb{Q}[X]$, then $\Delta_f = -23$, and hence $G_f = S_3$. (2) If $f \stackrel{\text{def}}{=} X^3 - 3X + 1 \in \mathbb{Q}[X]$, then $\Delta_f = 81$, and hence $G_f = \mathbb{Z}/3\mathbb{Z}$.

Example 2.2.8. If $f = X^4 - 2 \in \mathbb{Q}[X]$, then $G_f \cong D_8$, the dihedral group of 8 elements. More precisely, if $\phi \in \operatorname{Gal}(Q[\sqrt[4]{2}, i]/\mathbb{Q}[i])$ such that $\phi(\sqrt[4]{2}) = \sqrt[4]{2}i$ and $\psi \in \operatorname{Gal}(Q[\sqrt[4]{2}, i]/\mathbb{Q}[\sqrt[4]{2}])$ such that $\psi(i) = -i$ [i.e., ψ is the complex conjugation], then

$$G_f = \left\langle \phi, \psi : \phi^4 = \mathrm{id}, \psi^2 = \mathrm{id}, \psi \circ \phi = \phi^3 \circ \psi \right\rangle$$
$$= \left\{ \mathrm{id}, \phi, \phi^2, \phi^3, \psi, \phi \circ \psi, \phi^2 \circ \psi, \phi^3 \circ \psi \right\}.$$

Proposition 2.2.9. Let E be a field, t_1, \ldots, t_n be algebraically independent variables over E, s_1, \ldots, s_n be their elementary symmetric functions, $F \stackrel{\text{def}}{=} E(s_1, \ldots, s_n)$ and $K \stackrel{\text{def}}{=} E(t_1, \ldots, t_n)$. Then $\min_{t_i, F} = \prod_{i=1}^n (X - t_i)$ and $\operatorname{Gal}(K/F) \cong S_n$.

Theorem 2.2.10 (Fundamental Theorem of Algebra). \mathbb{C} is the algebraic closure of \mathbb{R} .

Lemma 2.2.11. If $G \subseteq S_p$, with p prime, and G contains a transposition and a p-cycle, then $G = S_p$.

Proposition 2.2.12. If $f \in \mathbb{Q}[X]$ is irreducible, deg f = p, with p prime, and if f has exactly two complex roots, then $G_f \cong S_p$.

Example 2.2.13. As an application of the proposition above, let $f \stackrel{\text{def}}{=} X^5 - 4X + 2 \in \mathbb{Q}[X]$. Then $G_f \cong S_5$. In fact, one can use the above proposition to prove that for every prime p there is a polynomial $f_p \in \mathbb{Q}[X]$ such that $G_{f_p,\mathbb{Q}} = S_p$. [One can get all S_n , in fact, but it is harder.]

Theorem 2.2.14. Let $f \in \mathbb{Z}[X]$ be a monic separable polynomial, p be a prime that does not divide the discriminant of f, and $\overline{f} \in \mathbb{Z}/p\mathbb{Z}[X]$ be the reduction modulo p of f [i.e., obtained by reducing the coefficients]. Then, there is a bijection between the roots of f and the roots of \overline{f} , denoted by $\alpha \mapsto \overline{\alpha}$, and an injection $i : G_{\overline{f}} \to G_f$, such that, if $\phi \in G_{\overline{f}}$ and $\overline{\alpha}_i$ and $\overline{\alpha}_j$ are roots of \overline{f} , with $\phi(\overline{\alpha}_i) = \overline{\alpha}_j$, then $i(\phi)(\alpha_i) = \alpha_j$.

In particular, if $\phi \in G_{\bar{f}}$, then G_f has an element [namely $i(\phi)$] that has the same cycle structure [seen as a permutation] as ϕ itself. [E.g., if ϕ as a permutation is a product of a two-cycle, a 4-cycle and a 7-cycle [all disjoint], then $i(\phi)$ is also a product of a two-cycle, a 4-cycle and a 7-cycle [all disjoint] in G_f .]

Example 2.2.15. As an application of the theorem above, one can prove that $f \stackrel{\text{def}}{=} X^5 - X - 1 \in \mathbb{Z}[X]$ is such that $G_f = S_5$, by reducing f modulo 5 and modulo 2.

2.3. Roots of Unity.

Definition 2.3.1.

- (1) A *n*-th root of unity in a field F is a root of $X^n 1$ in F. A root of unity [with no *n* specified] is a root of unit for some *n*.
- (2) The set of all roots of unity form an Abelian group, denoted by $\mu(F)$ or simply μ .
- (3) The set of *n*-th roots of unity in *F* is a *cyclic* group denoted by $\mu_n(F)$ or simply μ_n .
- (4) If char(F) $\nmid n$, then $|\boldsymbol{\mu}_n| = n$ and a generator of $\boldsymbol{\mu}_n$ is called a *primitive n-th* root of unity.

- **Proposition 2.3.2.** (1) If char(F) = p > 0, $n = p^r m$, and $p \nmid m$, then $\boldsymbol{\mu}_n(F) = \boldsymbol{\mu}_m(F)$ [and so $|\boldsymbol{\mu}_n(F)| = m$].
 - (2) If gcd(n,m) = 1, then μ_n × μ_m ≃ μ_n · μ_m = μ_{nm} and the isomorphism is given by (ζ,ζ') → ζζ'. [In particular, if ζ_n and ζ_m are primitive n-th and m-th roots of unity, then ζ_nζ_m is a primitive nm-th root of unity.]

Proposition 2.3.3. Let F be a field such that $\operatorname{char}(F) \nmid n$, and ζ_n a primitive n-th root of unity. Then $F[\zeta_n]/F$ is Galois. If $\phi \in \operatorname{Gal}(F[\zeta_n]/F)$, then $\phi(\zeta_n) = \zeta_n^{i(\phi)}$, for some $i(\phi) \in (\mathbb{Z}/n\mathbb{Z})^{\times}$ and this map $i : \operatorname{Gal}(F[\zeta_n]/F) \to (\mathbb{Z}/n\mathbb{Z})^{\times}$ is injective. Thus, $\operatorname{Gal}(F[\zeta_n]/F)$ is Abelian.

Remark 2.3.4. Note that $\operatorname{Gal}(F[\zeta_n]/F)$ is not necessarily cyclic. For example, $\operatorname{Gal}(\mathbb{Q}[\zeta_8]/\mathbb{Q}) \cong (\mathbb{Z}/2\mathbb{Z}) \times (\mathbb{Z}/2\mathbb{Z}).$

Definition 2.3.5. We say that K/F is a cyclotomic extension if there exists a root of unity ζ over F such that $K = F[\zeta]$. [Careful: in Lang, an extension is cyclotomic if there exists a root of unity ζ over F such that $K \subseteq F[\zeta]$!]

Definition 2.3.6. Let $\varphi : \mathbb{Z} \to \mathbb{Z}$ denote the *Euler phi-function*, which is defined as

$$\varphi(n) \stackrel{\text{def}}{=} \left| \{ m \in \mathbb{Z} : 0 < m < n \text{ and } \gcd(m, n) = 1 \} \right|.$$

Theorem 2.3.7. If ζ_n is a primitive n-th root of unity in \mathbb{Q} , then $[\mathbb{Q}[\zeta_n] : \mathbb{Q}] = \varphi(n)$ and the map $i : \operatorname{Gal}(F[\zeta_n]/F) \to (\mathbb{Z}/n\mathbb{Z})^{\times}$ [as in Proposition 2.3.3] is an isomorphism.

Corollary 2.3.8. If ζ_m and ζ_n are a primitive *m*-th root of unity and primitive *n*-th root of unity, respectively, with gcd(m,n) = 1, then $\mathbb{Q}[\zeta_m] \cap \mathbb{Q}[\zeta_n] = \mathbb{Q}$,

Remark 2.3.9. If $m = \operatorname{lcm}(n_1, \ldots, n_r)$, and ζ_{n_i} is a primitive n_i -th root of unity for $i = 1, \ldots, r$, then $\mathbb{Q}[\zeta_{n_1}] \cdots \mathbb{Q}[\zeta_{n_r}] = \mathbb{Q}[\zeta_m]$.

Definition 2.3.10. Let n be a positive integer not divisible by char(F). The polynomial

$$\Phi_n(X) \stackrel{\text{def}}{=} \prod_{\substack{\zeta \text{ prim. } n-\text{th} \\ \text{root of 1 in } F}} (X - \zeta)$$

is called the *n*-th cyclotomic polynomial [over F].

Proposition 2.3.11.

- (1) $\deg \Phi_n = \varphi(n).$
- (2) If ζ_n is a primitive n-th root of unity, then $\Phi_n(X) = \min_{\zeta_n, \mathbb{Q}}(X)$.
- (3) If ζ_n is a primitive n-th root of unity, then

$$\Phi_n(X) = \prod_{\phi \in \operatorname{Gal}(\mathbb{Q}[\zeta_n]/\mathbb{Q})} (X - \phi(\zeta_n))$$

- (4) $X^n 1 = \prod_{d|n} \Phi_d(X).$
- (5) If char(F) = 0, then $\Phi_n \in \mathbb{Z}[X]$ for all n. If char(F) = p > 0, then $\Phi_n \in \mathbb{F}_p[X]$ for all n [not divisible by p].

Proposition 2.3.12.

- (1) If p is prime, then $\Phi_p(X) = X^{p-1} + X^{p-2} + \dots + X + 1$.
- (2) If *p* is prime, then $\Phi_{p^r}(X) = \Phi_p(X^{p^{r-1}})$.
- (3) If $n = p_1^{r_1} \cdots p_s^{r_s}$, with p_i 's distinct primes, then $\Phi_n(X) = \Phi_{p_1 \cdots p_s}(X^{p_1^{r_1-1} \cdots p_s^{r_s-1}})$.
- (4) If n > 1 is odd, then $\Phi_{2n}(X) = \Phi_n(-X)$.
- (5) If $p \nmid n$, with p an odd prime, then $\Phi_{pn}(X) = \frac{\Phi_n(X^p)}{\Phi_n(X)}$.
- (6) If $p \mid n$, with p prime, then $\Phi_{pn}(X) = \Phi_n(X^p)$.

Remark 2.3.13. It is not true that for all n, the coefficients of $\Phi_n(X)$ are either 0, 1 or -1. The first n for which this fails is $105 = 3 \cdot 5 \cdot 7$.

Theorem 2.3.14 (Dirichlet's Theorem of Primes in Arithmetic Progression). If gcd(a, r) = 1, there are infinitely many primes in the arithmetic progression

$$a, a + r, a + 2r, a + 3r, \dots$$

Theorem 2.3.15. Given a finite Abelian group G, there exists an extension F/\mathbb{Q} such that $\operatorname{Gal}(F/\mathbb{Q}) = G$.

Theorem 2.3.16 (Kronecker-Weber). If F/\mathbb{Q} is finite and Abelian, then there exists a cyclotomic extension $\mathbb{Q}[\zeta]/\mathbb{Q}$ such that $F \subseteq \mathbb{Q}[\zeta]$.

2.4. Linear Independence of Characters.

Definition 2.4.1. Let G be a monoid [i.e., a "group" which might not have inverses] and F be a field. A character of G in F is a homomorphism $\chi: G \to F^{\times}$. The trivial character is the map constant equal to 1.

Let $f_i: G \to F$ for i = 1, ..., n. We say that the f_i 's are *linearly independent* if

$$\alpha_1 f_1 + \dots \alpha_n f_n = 0, \quad \alpha_i \in F,$$

then $\alpha_i = 0$ for all i.

- Remarks 2.4.2. (1) If K/F is a field extension and $\{\phi_1, \ldots, \phi_n\}$ are the embedding of K over F, then we can think of $\phi|_{K^{\times}}$ as characters of K^{\times} in K.
 - (2) If one says only a character in G (without mention of the field), one usually means a character from G in \mathbb{C}^{\times} or even in

$$S^1 \stackrel{\text{def}}{=} \{ \zeta \in \mathbb{C} : |\alpha| = 1 \}.$$

Theorem 2.4.3 (Artin). If χ_1, \ldots, χ_n distinct characters of G in F, then they are linearly independent.

Corollary 2.4.4. Let $\alpha_1, \ldots, \alpha_n$ be distinct elements of a field F^{\times} . If $a_1, \ldots, a_n \in F$ such that for all positive integer r we have

$$a_1 \alpha_1^r + \dots + a_n \alpha_n^r = 0,$$

then $a_i = 0$ for all *i*.

Corollary 2.4.5. For any extension K/F, the set $\operatorname{Emb}_{K/F}$ is linearly independent over K.

2.5. Norm and Trace.

Definition 2.5.1. Let K/F be a finite extension, with $[K : F]_s = r$ and $[K : F]_i = p^{\mu}$. [So, char(F) = p or $[K : F]_i = 1$.] Let $\operatorname{Emb}_{K/F} = \{\phi_1, \ldots, \phi_n\}$ and $\alpha \in K$:

(1) The *norm* of α from K to F is

$$N_{K/F}(\alpha) \stackrel{\text{def}}{=} \prod_{i=1}^{n} \phi(\alpha^{p^{\mu}}) = \left(\prod_{i=1}^{n} \phi_i(\alpha)\right)^{[K:F]_{i}}.$$

(2) The *trace* of α from K to F is

$$\operatorname{Tr}_{K/F}(\alpha) \stackrel{\text{def}}{=} [K:F]_{\mathbf{i}} \cdot \sum_{i=1}^{n} \phi_{i}(\alpha).$$

Remark 2.5.2. Note that if K/F is inseparable, then $\operatorname{Tr}_{K/F}(\alpha) = 0$.

Lemma 2.5.3.

(1) Let K/F be a finite extension, and $\operatorname{Emb}_{K/F} = \{\phi_1, \ldots, \phi_n\}$ be the set of embeddings of K over F. If L/K is an algebraic extension and $\psi: L \to \overline{F}$ is an embedding over F, then

$$\{\psi \circ \phi_1, \ldots, \psi \circ \phi_n\} = \operatorname{Emb}_{K/F}.$$

(2) Let $F \subseteq K \subseteq L$ be field extensions. Let

$$\operatorname{Emb}_{K/F} = \{\phi_1, \dots, \phi_r\},\$$

and

$$\operatorname{Emb}_{L/K} = \{\psi_1, \dots, \psi_s\}.$$

If $\tilde{\phi}_i : \bar{F} \to \bar{F}$ is an extension of ϕ_i to \bar{F} (which exists since \bar{F}/F is algebraic), then

$$\operatorname{Emb}_{L/F} = \{ \phi_i \circ \psi_j : i \in \{1, \dots, r\} \text{ and } j \in \{1, \dots, s\} \}.$$

(3) Let K/F be a separable extension. If $\alpha \in K$ is such that $\phi(\alpha) = \alpha$ for all embeddings $\phi \in \operatorname{Emb}_{K/F}$, then $\alpha \in F$.

Theorem 2.5.4. Let L/F be a finite extension.

(1) For all $\alpha \in K$, $N_{K/F}(\alpha)$, $Tr_{K/F}(\alpha) \in F$.

24

- (2) If [K:F] = n and $\alpha \in F$, $N_{K/F}(\alpha) = \alpha^n$ and $\operatorname{Tr}_{K/F}(\alpha) = n \cdot \alpha$.
- (3) $N_{K/F}|_{K^{\times}} : K^{\times} \to F^{\times}$ is a [multiplicative] group homomorphism and $\operatorname{Tr}_{K/F} : K \to F$ is an [additive] group homomorphism.
- (4) If K is an intermediate field, then

$$N_{L/F} = N_{K/F} \circ N_{L/K},$$
$$Tr_{L/F} = N_{K/F} \circ Tr_{L/K}.$$

(5) If
$$L = F(\alpha)$$
, where $\min_{\alpha,F}(X) = X^n + a_{n-1}X^{n-1} + \dots + a_1X + a_0$, then
 $N_{L/F}(\alpha) = (-1)^n a_0$, $\operatorname{Tr}_{L/F}(\alpha) = -a_{n-1}$.

Corollary 2.5.5. If $F \subseteq F(\alpha) \subseteq K$, with [K : F] = n, $\min_{\alpha,F}(X) = X^d + a_{d-1}X^{d-1} + \cdots + a_1X + a_0$, and $[L : F(\alpha)] = e$, then

$$N_{L/F}(\alpha) = (-1)^n a_0^e, \qquad \text{Tr}_{L/F}(\alpha) = (-a_{d-1})^e.$$

Remark 2.5.6. $\operatorname{Tr}_{K/F} : K \to F$ is an F-linear map.

2.6. Cyclic Extensions.

Theorem 2.6.1 (Hilbert's Theorem 90 – multiplicative form). Let K/F be a cyclic extension of degree n and $\operatorname{Gal}(K/F) = \langle \sigma \rangle$. Then, $\beta \in K$ is such that $\operatorname{N}_{K/F}(\beta) = 1$ if, and only if, there exists $\alpha \in K^{\times}$ such that $\beta = \alpha/\sigma(\alpha)$.

Theorem 2.6.2. Let F be a field such that F contains a primitive *n*-th root of unity for some fixed n not divisible by char(F).

- If K/F is cyclic of degree n, then K = F[α] where α is a root of Xⁿ − a, for some a ∈ F. [In particular, min_{α,F} = Xⁿ − a.]
- (2) Conversely, if $a \in F$ and α is a root of $X^n a$, then $F[\alpha]/F$ is cyclic, its degree, say d, is a divisor of n, and $\alpha^d \in F$.

Remark 2.6.3. Note that, by linear independence of characters, if K/F is separable, then $\operatorname{Tr}_{K/F}$ is not constant equal to zero.

Theorem 2.6.4 (Hilbert's Theorem 90 – additive form). Let K/F be a cyclic extension of degree n and $\operatorname{Gal}(K/F) = \langle \sigma \rangle$. Then, $\beta \in K$ is such that $\operatorname{Tr}_{K/F}(\beta) = 0$ if, and only if, there exists $\alpha \in K^{\times}$ such that $\beta = \alpha - \sigma(\alpha)$.

Theorem 2.6.5 (Artin-Schreier). Let F be a field of characteristic p > 0.

- (1) If K/F is cyclic of degree p, then $K = F[\alpha]$ where α is a root of $X^p X a$, for some $a \in F$. [In particular, $\min_{\alpha,F} = X^p - X - a$.]
- (2) Conversely, if $a \in F$ and $f \stackrel{\text{def}}{=} X^p X a$, then either f splits completely in F or is irreducible over F. In the latter case, if α is a root of f, then $F[\alpha]/F$ is cyclic of degree p.

2.7. Solvable and Radical Extensions.

Definition 2.7.1. A finite extension K/F is a solvable extension if it is separable and the normal closure L of K/F [which is then finite Galois over F] is such that Gal(L/F) is a solvable group.

Remark 2.7.2. Note that for a finite separable extension K/F to be solvable, it suffices that there exists some finite Galois extension of F containing K with its Galois group solvable.

Proposition 2.7.3. The class of solvable extensions is distinguished.

Definition 2.7.4. (1) A finite extension K/F is a repeated radical extension if there is a tower:

$$F = F_0 \subseteq F_1 \subseteq F_2 \subseteq \cdots \subseteq F_r = K,$$

such that $F_i = F_{i-1}[\alpha_i]$, where α_i is either a root of a polynomial $X^n - a$, for some $a \in F_{i-1}$ and with $\operatorname{char}(F) \nmid n$, or a root of $X^p - X - a$, for some $a \in F_{i-1}$, where $p = \operatorname{char}(F)$. [Note that α_i might then be a root of unity.]

(2) A finite extension K/F is a radical extension if there is $L \supseteq K$ such that L/F is repeated radical.

Remark 2.7.5. Note that, by definition, if K is the splitting field of a separable polynomial $f \in F[X]$, then the roots of f are given by radicals [i.e., f is solvable by radicals] if, and only if, K is radical.

Proposition 2.7.6. The class of radical extensions is distinguished.

Theorem 2.7.7. Let K/F be separable. Then, K/F is solvable if, and only if, it is radical.

Remark 2.7.8. This allows us to determine when a polynomial can be solved by radicals simply by looking at its Galois group!

Theorem 2.7.9. For n = 2, 3, 4 [and char $(F) \neq 2, 3$] there are formulas for solving [general] polynomial equations of degree n by means of radicals. For $n \geq 5$, there aren't.

Theorem 2.7.10. Suppose that $f \in \mathbb{Q}[X]$ is irreducible and splits completely in \mathbb{R} . If any root of f lies in a real repeated radical extension of \mathbb{Q} , then deg $f = 2^r$ for some non-negative integer r.

Remark 2.7.11. Note that the above theorem tells us that we cannot replace radical by repeated radical in trying to express all roots of a polynomials in terms of radicals. For example, the polynomial $f = X^3 - 4X + 2$ splits completely in \mathbb{R} and is solvable. So, we can write its roots in terms of radicals [since its radical], but we must have complex numbers to write them in terms of radicals [since is not repeated radical by the theorem above]. More precisely, if

$$\alpha \stackrel{\text{def}}{=} \sqrt[3]{\frac{\sqrt{111}}{9}} - 1, \quad \text{and} \quad \zeta_3 \stackrel{\text{def}}{=} \frac{\sqrt{3}}{2}\mathbf{i} - \frac{1}{2},$$

then the [all real] roots of f are

$$\alpha + \frac{4}{3\alpha}, \quad \alpha \zeta_3 + \frac{4}{3\alpha \zeta_3}, \quad \alpha \zeta_3^2 + \frac{4}{3\alpha \zeta_3^2}$$

[We *cannot* rewrite the above roots only using radicals of real numbers!]

INDEX

Abelian extension, 15 algebraic, 2 algebraic closure, 5 algebraic extension, 3 algebraically closed, 5 Artin-Schreier Theorem, 26

base field, 2

character, 23 characteristic 0, 1 characteristic p, 1 composite, 4 compositum, 4 conjugates, 9 cyclic extension, 15 cyclotomic extension, 21 cyclotomic polynomial, 22

degree, 2
Dirichlet's Theorem of Primes in Arithmetic Progression, 22
discriminant, 18
distinguished, 4

embedding, 5 Euler phi-function, 21 extension, 2, 5

finite extension, 2 finitely generated, 4 fixed field, 11 formal derivative, 6 Frobenius morphism, 12 Fundamental Theorem of Algebra, 19 Fundamental Theorem of Galois Theory, 15

Galois extension, 11 Galois group, 11 Galois group of a separable polynomial, 17 generates, 4

Hilbert's Theorem 90 – additive form, 26 Hilbert's Theorem 90 – multiplicative form, 25

infinite extension, 2 inseparable, 10 intermediate fields, 9 irreducible polynomial, 3

Kronecker-Weber Theorem, 23

linearly independent, 23

minimal polynomial, 3 monoid, 23

Natural Irrationalities, 16 norm, 24 normal closure, 9 normal extension, 7

orbit, 17 over, 5

perfect field, 13 prime field, 2 primitive *n*-th root of unity, 20 primitive element, 2 Primitive Element Theorem, 9 purely inseparable, 10 purely inseparable extension, 10

quasi-distinguished, 5

radical extension, 26 repeated radical extension, 26 root of unity, 20 separable, 8 separable closure, 9 separable degree, 8 separable extension, 8 simple extension, 9 solvable by radicals, 27 solvable extension, 26 splits, 5 splitting field, 7

trace, 24 transitive subgroup, 17 trivial character, 23