1. [50 points] An R-module is called artinian if it satisfies the descending chain condition for submodules.

Suppose L, M and N are R-modules yielding the short exact sequence:

$$
0 \longrightarrow L \xrightarrow{\psi} M \xrightarrow{\phi} N \longrightarrow 0
$$

Show that if L and N are artinian, then so is M.
[Note: The converse is also true and easier to prove.]

Proof. Let $M_{1} \subseteq M_{2} \subseteq \cdots$ be a sequence of submodules on M.
Since L is artinian, ψ is injective [and thus an isomorphism onto $\psi(L)$], we have that $M_{1} \cap$ $\psi(L) \subseteq M_{2} \cap \psi(L) \subseteq \cdots$ is stationary [as its preimage is], i.e., there exists l such that $M_{i} \cap \psi(L)=M_{l} \cap \psi(L)$ for all $i \geq l$.

Since N is artinian and $\phi\left(M_{i}\right)$ is a submodule of N, we have that $\phi\left(M_{1}\right) \subseteq \phi\left(M_{2}\right) \subseteq \cdots$ is also stationary, i.e., there exists n such that $\phi\left(M_{i}\right)=\phi\left(M_{n}\right)$ for all $i \geq n$.

Let $m=\max \{l, n\}$. Then, $M_{i}=M_{n}$ for $i \geq n$. Indeed: let $x \in M_{m}$. [We need to show that $x \in M_{i}$ for all $i \geq m$.] We have that $\phi(x) \in \phi\left(M_{m}\right)=\phi\left(M_{i}\right)$. Thus, there is $y \in M_{i}$ such that $(x-y) \in \operatorname{ker}(\phi)=\psi(M)$, so $x-y \in M_{m} \cap \psi(L)$ [as $y \in M_{i} \subseteq M_{m}$], and hence $x-y \in M_{i} \supseteq M_{i} \cap \psi(L)=M_{m} \cap \psi(L)$. Thus, $x=y+(x-y) \in M_{i}$.
2. [50 points] Let M and N be R-modules and M^{\prime} and N^{\prime} be submodules of M and N respectively. Define L as the sumbodule of $M \otimes_{R} N$ generated by the set $\left\{x \otimes y \in M \otimes_{R} N\right.$: either $x \in M^{\prime}$ or $\left.y \in N^{\prime}\right\}$. Show that $M / M^{\prime} \otimes_{R} N / N^{\prime} \cong\left(M \otimes_{R} N\right) / L$.
[Note: If the proof is straightforward, you can just say that a map is bilinear without proof.]

Proof. Consider the $\operatorname{map} \phi: M \times N \rightarrow M / M^{\prime} \otimes N / N^{\prime}$ defined by $\phi(m, n)=\left(m+M^{\prime}\right) \otimes\left(n+N^{\prime}\right)$. This is clearly bilinear, and hence induces a homomorphism $\Phi: M \otimes N \rightarrow M / M^{\prime} \otimes N / N^{\prime}$ such that $\Phi(m \otimes n)=\left(m+M^{\prime}\right) \otimes\left(n+N^{\prime}\right)$.

Note that $L \subseteq \operatorname{ker}(\Phi)$, as if either $m \in M^{\prime}$ or $n \in N^{\prime}$, then $\Phi(m \otimes n)=0$. Thus, we have a naturally defined homomorphism $\tilde{\Phi}:(M \otimes N) / L \rightarrow M / M^{\prime} \otimes N / N^{\prime}$, with $\tilde{\Phi}(m \otimes n+L)=$ $\left(m+M^{\prime}\right) \otimes\left(n+N^{\prime}\right)$.

Now, consider the map $\psi: M / M^{\prime} \times N / N^{\prime} \rightarrow(M \otimes N) / L$, defined by $\psi\left(m+M^{\prime}, n+N^{\prime}\right)=$ $m \otimes n+L$. This is well defined, as if $m^{\prime}-m \in M^{\prime}$ and $n^{\prime}-n \in N^{\prime}$, then

$$
\begin{aligned}
m^{\prime} \otimes n^{\prime}+L & =\left(m+\left(m^{\prime}-m\right)\right) \otimes\left(n+\left(n^{\prime}-n\right)\right)+L \\
& =m \otimes n+\left(m \otimes\left(n^{\prime}-n\right)+\left(m^{\prime}-m\right) \otimes n+\left(m^{\prime}-m\right) \otimes\left(n^{\prime}-n\right)\right)+L \\
& =m \otimes n+L
\end{aligned}
$$

Thus, we have a homomorphism $\Psi: M / M^{\prime} \otimes N / N^{\prime} \rightarrow(M \otimes N) / L$, such that $\Psi\left(\left(m+M^{\prime}\right) \otimes\right.$ $\left.\left(n+N^{\prime}\right)\right)=m \otimes n+L$.

Clearly, $\tilde{\Phi}$ and Ψ are inverses of each other.

