Midterm

M552 - Modern Algebra II

March 12th, 2012

Solve as many as you can in class. [I would hope you could do all of this in class, as it is comparable to one part of the prelim.] Then, you may take this sheet home and solve all remaining problems, or problems that you think you've missed, and bring it to class on Wednesday. I will consider it for some partial credit. [At most half of the original number of points you've missed in the question.] You should treat these problem as a take-home exam, not as a homework. So, you should not discuss anything about these problems with anyone. You can, however, use your book and notes. [No internet or other textbooks, though.]

We assume that R is a commutative ring with $1 \neq 0$.

1. [50 points] An R-module is called artinian if it satisfies the descending chain condition for submodules.

Suppose L, M and N are R-modules yielding the short exact sequence:

$$
0 \longrightarrow L \xrightarrow{\psi} M \xrightarrow{\phi} N \longrightarrow 0
$$

Show that if L and N are artinian, then so is M.
[Note: The converse is also true and easier to prove.]
2. [50 points] Let M and N be R-modules and M^{\prime} and N^{\prime} be submodules of M and N respectively. Define L as the sumbodule of $M \otimes_{R} N$ generated by the set $\left\{x \otimes y \in M \otimes_{R} N\right.$: either $x \in M^{\prime}$ or $\left.y \in N^{\prime}\right\}$. Show that $M / M^{\prime} \otimes_{R} N / N^{\prime} \cong\left(M \otimes_{R} N\right) / L$.
[Note: If the proof is straightforward, you can just say that a map is bilinear without proof.]

