Final (Solutions)

M552 - Modern Algebra II

May 2nd, 2012

We assume that R is a commutative ring with $1 \neq 0$.

1. Let R be a domain with field of fractions F and M be an R-module. Show that if $\operatorname{rank}(M)=r$, then $\operatorname{dim}_{F}\left(F \otimes_{R} M\right)=r$.

Proof. Remember first that if $1 \otimes m=0$ in $F \otimes_{R} M$ if and only if there exists $c \in R \backslash\{0\}$ such that $c m=0$.

Let $m_{1}, \ldots, m_{r} \in M$ be linearly independent elements. Suppose that $\sum_{i=1}^{r}\left(a_{i} / b_{i}\right)\left(1 \otimes m_{i}\right)=$ $\sum_{i=1}^{r}\left(a_{i} / b_{i}\right) \otimes m_{i}=0$. Let $b \stackrel{\text { def }}{=} b_{1} \cdots b_{r}$. Then, $b / b_{i} \in R$ and
$0=b\left(\sum_{i=1}^{r}\left(a_{i} / b_{i}\right) \otimes m_{i}\right)=\sum_{i=1}^{r} a_{i}\left(b / b_{i}\right) \otimes m_{i}=\sum_{i=1}^{r} 1 \otimes\left(a_{i}\left(b / b_{i}\right) m_{i}\right)=1 \otimes\left(\sum_{i=1}^{r} a_{i}\left(b / b_{i}\right) m_{i}\right)$.
Thus, we have then that there exists $c \in R \backslash\{0\}$ such that

$$
0=c\left(\sum_{i=1}^{r} a_{i}\left(b / b_{i}\right) m_{i}\right)=\left(\sum_{i=1}^{r} a_{i}\left(b / b_{i}\right) c m_{i}\right)
$$

Since, $b_{i}, c, b \neq 0$ [remember that R is a domain] and m_{1}, \ldots, m_{r} are linearly independent, we must have that $a_{i}=0$ [and so $a_{i} / b_{i}=0$] for all i, and hence $1 \otimes m_{1}, \ldots, 1 \otimes m_{r}$ are linearly independent in $F \otimes M$ and thus $\operatorname{dim}_{F}\left(F \otimes_{R} M\right) \geq r$.

Now, we observe that $F \otimes_{R} M=\{(1 / d) \otimes m: d \in R \backslash\{0\}, m \in M\}$. Indeed, if $v \in F \otimes_{R} M$, then there are $a_{i} / b_{i} \in F$ and $m_{i} \in M$ such that

$$
v=\sum_{i=1}^{k}\left(a_{i} / b_{i}\right) \otimes m_{i}=\sum_{i=1}^{k}\left(1 / b_{i}\right) \otimes\left(a_{i} m_{i}\right) .
$$

Let $d=b_{1} \cdots b_{k}$, and $d_{i}=d / b_{i} \in R$. Then,

$$
v=\sum_{i=1}^{k}\left(d / b_{i}\right) / d \otimes\left(a_{i} m_{i}\right)=\sum_{i=1}^{k} 1 / d \otimes\left(a_{i} d / b_{i} m_{i}\right)=1 / d \otimes\left(\sum_{i=1}^{k}\left(a_{i} d / b_{i} m_{i}\right)\right) .
$$

So, let $1 / d_{1} \otimes n_{1}, \ldots, 1 / d_{k} \otimes n_{k}$ be a basis of $F \otimes M$, and suppose that $\sum_{i=1}^{k} a_{i} n_{i}=0$. Then,

$$
0=1 \otimes\left(\sum_{i=1}^{k} a_{i} n_{i}\right)=\sum_{i=1}^{k} 1 \otimes\left(a_{i} n_{i}\right)=\sum_{i=1}^{k} a_{i} \otimes n_{i}=\sum_{i=1}^{k} a_{i} d_{i}\left(\left(1 / d_{i}\right) \otimes n_{i}\right)
$$

Thus, $a_{i} d_{i}=0$ and since $d_{i} \neq 0$, we must have $a_{i}=0$. Therefore, n_{1}, \ldots, n_{k} are linearly independent in M and thus $r=\operatorname{rank}(M) \geq k=\operatorname{dim}_{F}(F \otimes M)$.

With the two inequalities, we obtain the result.
2. Let F be a field and M be a finitely generated $F[x]$-module. Show that M is projective if, and only if, M is isomorphic [as $F[x]$-module] to $F[x] \otimes V$ for some finite dimensional vector F-space V.

Proof. We first prove that a finitely generated $F[x]$-module M is projective if and only if it is free. We have that M is projective if and only if there exists an $F[x]$-module N such that $M \oplus N$ is free. [So, the "if" part is trivial.]

Now, if M is not free, by the structure theorem of finitely generated modules over PIDs, we have that $F[x] /(f)$, for some $f \in F[X] \backslash F$, is a direct summand of M. So, there exists an element $m \in M \backslash\{0\}$ such that $f m=0$. Hence, we have that $(m, 0) \in M \otimes N$ is such that $f(m, 0)=0$, and therefore cannot be free.

So, M is projective if, and only if, $M \cong F[x]^{r} \cong F[x] \otimes F^{r}$. For this last isomorphism, remember that, as (S, R)-modules, we have that $N \otimes_{R} R \cong N$ for any (S, R)-modulo N, and $N \otimes_{R}\left(N^{\prime} \oplus N^{\prime \prime}\right) \cong\left(N \otimes_{R} N^{\prime}\right) \oplus\left(N \otimes_{R} N^{\prime \prime}\right)$. So, $F[x] \otimes F^{r} \cong F[x]^{r}$.
3. Let $q=p^{n}$, where p is an odd prime, and consider $f=x^{q}-x-1 \in \mathbb{F}_{q}[x]$. Show that every irreducible factor of f has degree p. [Hint: if α is a root, then show that $\alpha^{\left(q^{p}\right)}=\alpha$.]

Proof. If $f(\alpha)=0$, then $\alpha^{q}=\alpha+1$. So, $\alpha^{\left(q^{i}\right)}=\alpha+i$, and therefore $\alpha^{\left(q^{p}\right)}=\alpha$.
Let $g \stackrel{\text { def }}{=} \min _{\alpha, \mathbb{F}_{q}}$. [Clearly $g \mid f$ and is irreducible. We will show that $\operatorname{deg} g=p$.] Now, we have that $\mathbb{F}_{q}[\alpha] / \mathbb{F}_{q}$ is Galois [finite field extension], and its Galois group is generated by $\psi: a \rightarrow a^{q}$ [the n-th power of the Frobenius map]. Also, $\operatorname{deg} g=\left[\mathbb{F}_{q}[\alpha]: \mathbb{F}_{q}\right]=\left|\operatorname{Gal}\left(\mathbb{F}_{q}[\alpha] / \mathbb{F}_{q}\right)\right|=|\langle\psi\rangle|$. But $\psi^{i}=\operatorname{id}_{\mathbb{F}_{q}[\alpha]}$ if and only if $\alpha+i=\psi^{i}(\alpha)=\alpha$ [as ψ fixes $\left.\mathbb{F}_{q}\right]$, i.e., if and only if $i \mid p$. So, $\operatorname{deg} g=|\langle\psi\rangle|=p$.

Since all irreducible factors of f come from minimal polynomial of roots of f, we have that all irreducible factors of f have degree p.
4. Let $F \subseteq K \subseteq L$ be fields, with K / F Galois, $\alpha \in L$ such that $F[\alpha] / F$ is also Galois. Assume also that $\operatorname{Gal}(K / F) \cong A_{7}$ and $\operatorname{Gal}(F[\alpha] / F) \cong Z_{4} \times Z_{7}$. Find $\operatorname{Aut}(K[\alpha] / K)$.

Proof. We first prove that $K \cap F[\alpha]=F$. Indeed, if $E \stackrel{\text { def }}{=} K \cap F[\alpha]$, then since $F[\alpha] / F$ is abelian, we have that E / F is Galois. This implies that $\operatorname{Gal}(K / E) \triangleleft \operatorname{Gal}(K / F) \cong A_{7}$. Since A_{7} is simple, we have $\operatorname{Gal}(K / E)$ is either trivial or the whole A_{7}. But the former cannot occur, since then $(7!) / 2=\left|A_{7}\right|=|\operatorname{Gal}(E / F)| \leq|\operatorname{Gal}(F[\alpha] / F)|=\left|Z_{4} \times Z_{7}\right|=28$.

Therefore, we have that $E=F$. Thus, since $F[\alpha] \cdot K=K[\alpha]$, by Natural Irrationalities, we obtain that $K[\alpha] / K$ is Galois with $\operatorname{Gal}(K[\alpha] / K) \cong \operatorname{Gal}(F[\alpha] / F) \cong Z_{4} \times Z_{7}$. Since $K[\alpha] / K$ is Galois, we have $\operatorname{Aut}(K[\alpha] / K)=\operatorname{Gal}(K[\alpha] / K)$.

