1) $[10$ points $]$ Let $f(x)=\frac{(x-1)^{2}(x+2)^{2}}{x^{2}-3 x+2}$.
(a) Give the domain of $f(x)$.
(b) Give the values of x for which we have $f(x)=0$.
(c) Give the intervals where $f(x)<0$.

Solution. For (a) we only need to see what are the zeros in the denominators. Solving $x^{2}-3 x+2=0$, we obtain $x=1$ and $x=2$. So, the domain all real numbers different from 1 and 2 .

For (b) we need to see what are the values of x in the domain that make the numerator zero. The zeros of the numerator are $x=1$ and $x=-2$. So, the only value of x that make $f(x)=0$ is $x=-2$.

For (c) one can mark the points in which $f(x)$ is not defined and where it is zero [from parts (a) and (b)] and check the signs for choices in between them. We get that $f(x)>0$ in $(-\infty,-2),(-2,1)$, and $(2, \infty)$, and $f(x)<0$ for in $(1,2)$.
2) Compute the following limits.
(a) [5 points] $\lim _{x \rightarrow 1} \frac{x^{3}+\mathrm{e}^{x}}{x^{2}-2 x+1}$

Solution. Since plugging $x=1$ gives us " $(1+\mathrm{e}) / 0$ " $[$ and $(1+\mathrm{e}) \neq 0]$, we have that it is some kind of infinite limit. Since the numerator and denominator are positive close to 1 [on either side], we get that the limit is $+\infty$.
(b) [5 points] $\lim _{x \rightarrow-\infty} \frac{2 x^{3}-3 x+1}{x^{3}+\sqrt[3]{x}}$

Solution. Since the highest powers of x in the numerator and denominator are equal, we get that the limit is the quotient of their coefficients. Thus the limit is $2 / 1=2$.
(c) [5 points] $\lim _{x \rightarrow 0} \frac{\cos \left(2 x^{2}\right)-\mathrm{e}^{x}}{3 \tan (3 x)}$

Solution. We use L'Hospital's rule:

$$
\begin{aligned}
\lim _{x \rightarrow 0} \frac{\cos \left(2 x^{2}\right)-\mathrm{e}^{x}}{3 \tan (3 x)} & =\lim _{x \rightarrow 0} \frac{-\sin \left(2 x^{2}\right) \cdot 4 x-\mathrm{e}^{x}}{3 \sec ^{2}(3 x) \cdot 3} \\
& =\lim _{x \rightarrow 0} \frac{-\left(4 x \sin \left(2 x^{2}\right)+\mathrm{e}^{x}\right)}{9 \sec ^{2}(3 x)} \\
& =-\frac{1}{9}
\end{aligned}
$$

3) Compute the following derivatives:
(a) $\left[5\right.$ points] $\frac{\mathrm{d}}{\mathrm{d} x}\left(\arctan \left(2^{x}\right)\right)$

Solution.

$$
\frac{\mathrm{d}}{\mathrm{~d} x}\left(\arctan \left(2^{x}\right)\right)=\frac{1}{1+\left(2^{x}\right)^{2}} \cdot 2^{x} \cdot \ln (2) .
$$

(b) $\left[5\right.$ points] $\frac{\mathrm{d}}{\mathrm{d} x}(\ln (x) \sqrt{x})$

Solution.

$$
\frac{\mathrm{d}}{\mathrm{~d} x}(\ln (x) \sqrt{x})=\frac{1}{x} \cdot \sqrt{x}+\ln (x) \cdot \frac{1}{2 \sqrt{x}}=\frac{1}{\sqrt{x}}+\frac{\ln (x)}{2 \sqrt{x}}
$$

(c) [5 points] $\frac{\mathrm{d}}{\mathrm{d} x}\left(\frac{f(g(x))}{f(x) g(x)}\right)$ [your answer should be a formula in terms of $f(x), g(x), f^{\prime}(x)$ and $\left.g^{\prime}(x)\right]$

Solution.

$$
\begin{aligned}
\frac{\mathrm{d}}{\mathrm{~d} x}\left(\frac{f(g(x))}{f(x) g(x)}\right) & =\frac{\frac{\mathrm{d}}{\mathrm{~d} x}(f(g(x))) \cdot(f(x) g(x))-f(g(x)) \frac{\mathrm{d}}{\mathrm{~d} x}(f(x) g(x))}{(f(x) g(x))^{2}} \\
& =\frac{\left(f^{\prime}(g(x)) g^{\prime}(x)\right) f(x) g(x)-f(g(x))\left(f^{\prime}(x) g(x)+f(x) g^{\prime}(x)\right)}{(f(x) g(x))^{2}}
\end{aligned}
$$

4) [10 points] Find the coordinates [x and y-coordinates] of the points with horizontal tangent line on the curve given by $y^{2}=x^{3}-3 x$.
[Note: The graph is given below, but you cannot use it in the solution. It might be useful to verify if your answer seems correct, though.]

Solution. We have

$$
2 y y^{\prime}=3 x^{2}-3 \quad \text { and so } \quad y^{\prime}=\frac{3\left(x^{2}-1\right)}{2 y} .
$$

So, solving $y^{\prime}=0$ we obtain $x= \pm 1$. So,

$$
y^{2}=(\pm 1)^{3}-3(\pm 1)=\mp 2 .
$$

Since this is non-negative [as it is equal to y^{2}], we must discard the negative value, which is given by $x=1$.

For $x=-1$ we get $y= \pm \sqrt{2}$. So, there are two points with horizontal tangent line: $(-1, \sqrt{2})$ and $(-1,-\sqrt{2})$.
5) [10 points] Find the maximum and minimum of $f(x)=2 x^{3}-15 x^{2}+24 x+7$ on [0, 6] as well as the values of x in which they occur.

Solution. We have $f^{\prime}(x)=6 x^{2}-30 x+24=6\left(x^{2}-5 x+4\right)=6(x-4)(x-1)$. So, the critical points are $x=1$ and $x=4$.

We have $f(0)=7, f(1)=18, f(4)=-9$ and $f(6)=43$. So, the minimum is -9 , and occurs at $x=4$, and the maximum is 43 , and occurs at $x=6$.
6) [10 points] [In this question you will set up, but not solve an optimization problem.]

A person can swim at speed of 3 feet per second and run at a speed of 5 feet per second. He has to cross a 20 feet long river from point A [see picture below] to get to point B which is 60 feet to the left of the opposite margin of point A.

Find a function that gives the time it will take the person to go from A to B if he swims first to a point x feet to the right of B [labeled P in the picture] and then runs the rest of the way. [This function should involve x only!] Also, give a closed interval for the values of x in which the minimum of this function would give us the minimum time to go from A to B.

Solution. The function is the time to swim from A to P and then walk from P to B, so it is the distance from A to P, divided by how fast the person can swim, plus the distance from P to B, divided by how fast the person can walk:

$$
f(x)=\frac{\sqrt{20^{2}+(60-x)^{2}}}{3}+\frac{x}{5}
$$

The range for x is $[0,60]$.
7) [10 points] A 2 meter tall man runs away from a 5 meter high lamppost at a speed of 3 meter per second. [See picture below.] How fast is the length of the shadow [denote by y in the picture] increasing?

Solution. Using similar triangles we have $\frac{2}{y}=\frac{5}{x+y}$, and so, $y=\frac{2 x}{3}$.
Taking derivatives, we have $y^{\prime}=\frac{2 x^{\prime}}{3}=2$. So, the shadow increases at rate of 2 meters per second.
8) [10 points] The position of a particle moving along a straight line at time t is given by $s(t)$. The graph of $s(t)$ for t in $[0,3]$ is given below. [Coordinates of all local maxima/minima and inflexion points are given in the graph. Note that the tangent line at $t=0$ is horizontal!]

Answer the following based on the graph. [No need to justify these.]
(a) At what time(s) is the velocity [not position!] maximal and at what time(s) is it minimal?
(b) At what time(s) was the velocity equal to zero?
(c) When was the acceleration [not position, nor velocity!] negative? Give your answer as an interval.

Solution. The velocity is maximal when the tangent line is the steepest up, and so at $t=0.52$. It is minimal when the slope of the tangent line is the steepest down, and so at $t=2.23$.

The velocity is zero when the tangent line is horizontal, so at $t=0, t=1.19$ and $t=2.93$.
The acceleration is negative when the graph is concave down, so in ($0.52,2.23$).
9) [10 points] Sketch the graph of a function $f(x)$ which satisfies all of the following conditions [draw concavities carefully!]:

- domain is all real numbers except 1 ;
- x-intercepts are $-3.5,-2.5,0$, and y-intercept is 0 ;
- $f(-3)=-1, f(-1)=2$;
- $\lim _{x \rightarrow-\infty} f(x)=\infty, \lim _{x \rightarrow \infty} f(x)=0, \lim _{x \rightarrow 1_{-}} f(x)=-\infty, \lim _{x \rightarrow 1_{+}} f(x)=\infty ;$
- the sign of the derivative is given by:

- the sign of the second derivative is given by:

Solution. Needs to be drawn by hand...

