1) [15 points] If $f(x)=\ln \left(\cos \left(x^{2}\right)\right)$, compute $f^{\prime \prime}(x)$.

Solution. We have:

$$
f^{\prime}(x)=\frac{1}{\cos \left(x^{2}\right)} \cdot\left(-\sin \left(x^{2}\right)\right) \cdot 2 x=-2 x \cdot \tan \left(x^{2}\right)
$$

Thus,

$$
f^{\prime \prime}(x)=-2 \cdot \tan \left(x^{2}\right)-2 x \cdot \sec ^{2}\left(x^{2}\right) \cdot 2 x=-2 \cdot \tan \left(x^{2}\right)-4 x^{2} \cdot \sec ^{2}\left(x^{2}\right)
$$

2) [15 points] Find an approximation for $\arctan (1.1)$. What is the percentage error in this case?
[Note: Remember that I use $\arctan (x)$ for what the book denotes by $\tan ^{-1}(x)$. In other words, the book would ask for approximation of $\tan ^{-1}(1.1)$.]

Solution. We have that

$$
\frac{\mathrm{d}}{\mathrm{~d} x}(\arctan (x))=\frac{1}{x^{2}+1} .
$$

Thus,

$$
\arctan (1.1) \approx \arctan (1)+\frac{1}{1^{2}+1} \cdot 0.1=\pi / 4+0.05
$$

The percentage error is:

$$
\left|\frac{\arctan (1.1)-(\pi / 4+0.05)}{\arctan (1.1)}\right| .
$$

[You could not do this without a calculator, but this number is approximately 0.0029 , or 0.29%.]
3) [15 points] Find the equation of the line tangent to the curve $x^{2}+\sin (y)=x y^{2}+1$ at the point $(1,0)$.

Solution. Using implicit differentiation, we have:

$$
2 x+\cos (y) \cdot y^{\prime}=y^{2}+2 x y \cdot y^{\prime}
$$

At the point $(1,0)$, this gives us

$$
2+y^{\prime}=0
$$

So, $y^{\prime}=-2$. Hence, the equation of the tangent line is:

$$
(y-0)=-2(x-1) \quad \text { or } \quad y=-2 x+2 .
$$

4) [15 points] A rocket is takes off (vertically) with initial speed of 300 miles per hour. How fast is the distance between an observer (on the ground) 3 miles away from the take off point and the rocket is increasing when the rocket is 4 miles high?
[Note: The values of this problem were chosen for simplicity in computations, not for accuracy.]

Solution. If h is the height of the rocket and d is the distance to the observer, we have that Pythagoras gives us

$$
3^{2}+h^{2}=d^{2}
$$

Taking derivatives with respect to time, we get:

$$
2 h \cdot h^{\prime}=2 d \cdot d^{\prime} \quad \text { or } \quad 300 h=d \cdot d^{\prime} .
$$

When $h=4$, the formula above gives $d=5$. So,

$$
d^{\prime}=\frac{300 \cdot 4}{5}=240
$$

So, the distance is increasing 240 miles per hour.
5) Let $f(x)=x^{3}-12 x+1$.
(a) [10 points] Find where $f(x)$ is increasing and where it is decreasing.

Solution. We have $f^{\prime}(x)=3 x^{2}-12$. So, $f^{\prime}(x)=0$ at $x= \pm 2$. By plugging in $x=-3,0,3$ in $f^{\prime}(x)$ we get that:

- $f^{\prime}(x)$ is positive, and hence $f(x)$ is increasing, in $(-\infty,-2)$ and $(2, \infty)$;
- $f^{\prime}(x)$ is negative, and hence $f(x)$ is decreasing, in $(-2,2)$.
(b) [10 points] Find where $f(x)$ is concave up and where it is concave down.

Solution. We have $f^{\prime \prime}(x)=6 x$. Thus:

- $f^{\prime \prime}(x)$ is positive, and hence $f(x)$ is concave up, in $(0, \infty)$;
- $f^{\prime \prime}(x)$ is negative, and hence $f(x)$ is concave down, in $(-\infty, 0)$.
(c) [10 points] Find the x-coordinate of all inflection points and local maxima and minima of $f(x)$.

Solution. From item (a), we see that we have local maximum when $x=-2$ and a local minimum when $x=2$. From (b) we see that we have an inflection point at $x=0$.
(d) [10 points] Find the global maximum and minimum of $f(x)$ in the interval $[-3,5]$, indicating for which value(s) of x they occur.

Solution. We have local maximum and minimum at $x=2$ and $x=-2$. We have $f(2)=-15$ and $f(-2)=17$. At the end points, we get $f(-3)=10$ and $f(5)=66$.

