1) Compute the following limits. If they do not exist or are infinite, check the side limits.
(a) $\left[5\right.$ points] $\lim _{x \rightarrow 3} \frac{x^{3}-9 x}{x-3}$

Solution.

$$
\begin{aligned}
\lim _{x \rightarrow 3} \frac{x^{3}-9 x}{x-3} & =\lim _{x \rightarrow 3} \frac{x\left(x^{2}-9\right)}{x-3} \\
& =\lim _{x \rightarrow 3} \frac{x(x-3)(x+3)}{x-3} \\
& =\lim _{x \rightarrow 3} x(x+3)=18 .
\end{aligned}
$$

(b) [5 points] $\lim _{x \rightarrow 1} \frac{\left(\frac{1}{1-x}\right)}{x-1}$

Solution.

$$
\begin{aligned}
\lim _{x \rightarrow 1} \frac{\left(\frac{1}{1-x}\right)}{x-1} & =\lim _{x \rightarrow 1} \frac{1}{1-x} \cdot \frac{1}{x-1} \\
& =\lim _{x \rightarrow 1} \frac{-1}{(x-1)^{2}}=-\infty
\end{aligned}
$$

[Note, for the last step, that $\frac{-1}{(x-1)^{2}}$ is always negative!]
(c) [5 points] $\lim _{x \rightarrow-\infty} \frac{2 x^{2}-\sqrt{x}}{x^{2}+3 x^{-1}}$

Solution.

$$
\begin{aligned}
\lim _{x \rightarrow-\infty} \frac{2 x^{2}-\sqrt{x}}{x^{2}+3 x^{-1}} & =\lim _{x \rightarrow-\infty} \frac{x^{2}\left(2-x^{-3 / 2}\right)}{x^{2}\left(1+3 x^{-3}\right)} \\
& =\lim _{x \rightarrow-\infty} \frac{2-x^{-3 / 2}}{1+3 x^{-3}}=2
\end{aligned}
$$

(d) $[10$ points $] \lim _{x \rightarrow 0} \frac{\tan (4 x)}{9 x}$

Solution.

$$
\begin{aligned}
\lim _{x \rightarrow 0} \frac{\tan (4 x)}{9 x} & =\lim _{x \rightarrow 0} \frac{\sin (4 x) / \cos (4 x)}{9 x} \\
& =\lim _{x \rightarrow 0} \frac{1}{\cos (4 x)} \frac{\sin (4 x)}{9 x} \\
& =\left(\lim _{x \rightarrow 0} \frac{1}{\cos (4 x)}\right) \cdot\left(\lim _{x \rightarrow 0} \frac{\sin (4 x)}{9 x}\right) \\
& \left.=\frac{1}{\cos (0)} \cdot\left(\lim _{y \rightarrow 0} \frac{\sin (y)}{9 y / 4}\right) \quad \text { [make substitution } y=4 x\right] \\
& =1 \cdot\left(\frac{4}{9} \cdot \lim _{y \rightarrow 0} \frac{\sin (y)}{y}\right) \\
& =\frac{4}{9} .
\end{aligned}
$$

2) [10 points] Compute $\frac{\mathrm{d}}{\mathrm{d} x}\left(\sqrt{x^{3}} \cdot \mathrm{e}^{x}\right)$.

Solution. We have:

$$
\begin{aligned}
\frac{\mathrm{d}}{\mathrm{~d} x}\left(\sqrt{x^{3}} \cdot \mathrm{e}^{x}\right) & =\frac{\mathrm{d}}{\mathrm{~d} x}\left(\sqrt{x^{3}}\right) \cdot \mathrm{e}^{x}+\sqrt{x^{3}} \cdot \frac{\mathrm{~d}}{\mathrm{~d} x}\left(\mathrm{e}^{x}\right) \\
& =\frac{\mathrm{d}}{\mathrm{~d} x}\left(x^{3 / 2}\right) \cdot \mathrm{e}^{x}+\sqrt{x^{3}} \cdot \mathrm{e}^{x} \\
& =\frac{3}{2} x^{1 / 2} \cdot \mathrm{e}^{x}+\sqrt{x^{3}} \cdot \mathrm{e}^{x}
\end{aligned}
$$

3) [15 points] Find the equation of the line tangent to the graph of $f(x)=\frac{x+1}{x^{2}+1}$ at $x=0$.

Solution. We have:

$$
\begin{aligned}
f^{\prime}(x) & =\frac{\frac{\mathrm{d}}{\mathrm{~d} x}(x+1) \cdot\left(x^{2}+1\right)-(x+1) \cdot \frac{\mathrm{d}}{\mathrm{~d} x}\left(x^{2}+1\right)}{\left(x^{2}+1\right)^{2}} \\
& =\frac{1 \cdot\left(x^{2}+1\right)-(x+1) \cdot 2 x}{\left(x^{2}+1\right)^{2}} \\
& =\frac{-x^{2}-2 x+1}{\left(x^{2}+1\right)^{2}}
\end{aligned}
$$

So, $f^{\prime}(0)=1$.
The equation of the tangent line at $x=0$ is given by $y-f(0)=f^{\prime}(0)(x-0)$, i.e., $y-1=x$ $[$ or $y=x+1]$.
4) [10 points] Let

$$
f(x)= \begin{cases}x^{3}+1, & \text { if } x<0 \\ 1-x^{3}, & \text { if } x \geq 0\end{cases}
$$

Is $f(x)$ continuous at $x=0$?
Solution. We have

$$
\lim _{x \rightarrow 0_{+}} f(x)=\lim _{x \rightarrow 0_{+}} 1-x^{3}=1
$$

and

$$
\lim _{x \rightarrow 0_{-}} f(x)=\lim _{x \rightarrow 0_{-}} x^{3}+1=1
$$

Thus, $\lim _{x \rightarrow 0} f(x)=1=f(0)$, and therefore the function is continuous at $x=0$.
5) [10 points] Let $f(x)=\sin \left(x^{2}\right)-x$. Express $f^{\prime}(x)$ as a limit. [Do not compute the limit!] Solution. We have:

$$
f^{\prime}(x)=\lim _{h \rightarrow 0} \frac{f(x+h)-f(x)}{h}=\lim _{h \rightarrow 0} \frac{\sin \left((x+h)^{2}\right)-(x+h)-\left(\sin \left(x^{2}\right)-x\right)}{h} .
$$

6) [15 points] Show that the graphs of $f(x)=x \mathrm{e}^{x}$ and $g(x)=\cos (x)$ intersect and specify an interval in the x-axis for which we have at least one intersection.
[Hint: Use the Intermediate Value Theorem.]
Solution. There is an intersection if $x \mathrm{e}^{x}=\cos (x)$ has a solution, in other words, if $x \mathrm{e}^{x}-$ $\cos (x)=0$ has a solution. So, let $h(x)=x \mathrm{e}^{x}-\cos (x)$. Then, $h(0)=-1<0$. Also, we have that $h(1)>0$, since $|\cos (1)| \leq 1$ and $1 \cdot \mathrm{e}^{1}=\mathrm{e}>2$. Thus, there is a solution in $[0,1]$, and this solution gives us an x-value of the intersection of the two graphs.
7) [20 points] The graph of $f(x)$ is given below.

Put the following numbers in non-decreasing order: $f^{\prime}(-1.25), f^{\prime}(-0.75), f^{\prime}(0.75), f^{\prime}(2)$, $f^{\prime}(2.5)$. [You do not need to show work on this one.]
[Note: To put $-1,-2,0,3,0,1.25$ in non-decreasing order, is to put them in the order: $-2,-1,0,0,1.25,3$. In other words, it is in increasing order, except consecutive number might be equal.]

Solution. We just need to check the slopes of the tangent line at the given points. In particular, $f^{\prime}(-1.25)$ and $f^{\prime}(-0.75)$ are negative, $f^{\prime}(2)=0$, and $f^{\prime}(0.75)$ and $f^{\prime}(2.5)$ are positive. So, the order is: $f^{\prime}(-1.25), f^{\prime}(-0.75), f^{\prime}(2), f^{\prime}(0.75), f^{\prime}(2.5)$.

