1) Given $f(x)$, compute the derivatives $f^{\prime}(x)$.
(a) $[6$ points $] f(x)=\left(\frac{\mathrm{e}^{2 x}}{x^{2}+1}\right)^{5}$

## Solution.

$$
\begin{aligned}
f^{\prime}(x) & =5\left(\frac{\mathrm{e}^{2 x}}{x^{2}+1}\right)^{4} \cdot \frac{\mathrm{~d}}{\mathrm{~d} x}\left(\frac{\mathrm{e}^{2 x}}{x^{2}+1}\right) \\
& =5\left(\frac{\mathrm{e}^{2 x}}{x^{2}+1}\right)^{4} \cdot\left(\frac{\mathrm{e}^{2 x} \cdot 2 \cdot\left(x^{2}+1\right)-\mathrm{e}^{2 x} \cdot 2 x}{\left(x^{2}+1\right)^{2}}\right)
\end{aligned}
$$

(b) [7 points] $f(x)=\cos \left(2^{x}\right) \cdot \arctan (\sqrt{x})$

## Solution.

$$
f^{\prime}(x)=-\sin \left(2^{x}\right) \cdot 2^{x} \cdot \ln (2) \cdot \arctan (\sqrt{x})+\cos \left(2^{x}\right) \cdot \frac{1}{1+x} \cdot \frac{1}{2 \sqrt{x}} .
$$

(c) [7 points] $f(x)=x^{\ln (x)}$

Solution. Let $g(x)=\ln (f(x))=\ln (x) \cdot \ln (x)=(\ln (x))^{2}$. Then,

$$
g^{\prime}(x)=2 \ln (x) \cdot \frac{1}{x}
$$

On the other hand,

$$
g^{\prime}(x)=\frac{1}{f(x)} \cdot f^{\prime}(x)
$$

and so

$$
f^{\prime}(x)=f(x) g^{\prime}(x)=x^{\ln (x)} \cdot 2 \ln (x) \cdot \frac{1}{x} .
$$

2) [20 points] The equation $x^{2}+y^{2}=\left(2 x^{2}+2 y^{2}-x\right)^{2}$ gives a cardioid. [See the picture below.] Find equation of the tangent line at $(0,1 / 2)$.


Solution. Taking derivatives of both sides of the equation, we get

$$
2 x+2 y y^{\prime}=2\left(2 x^{2}+2 y^{2}-x\right) \cdot\left(4 x+4 y y^{\prime}-1\right) .
$$

If $x=0$ and $y=1 / 2$, we get

$$
y^{\prime}=1 \cdot\left(2 y^{\prime}-1\right) .
$$

Thus, at $(0,1 / 2)$ we have that $y^{\prime}=1$ and the equation of the tangent line is $y-1 / 2=1 \cdot(x-0)$, or $y=x+1 / 2$.
3) [20 points] Consider the parametrized curve [pictured below] given by

$$
\begin{aligned}
& x=\cos (t) \sin (2 t), \\
& y=\sin (t) \sin (2 t) .
\end{aligned}
$$

Show that the tangent lines for $t=\pi / 4$ and $t=-\pi / 4$ are perpendicular.


Solution. We have

$$
\frac{\mathrm{d} y}{\mathrm{~d} x}=\frac{\mathrm{d} y / \mathrm{d} t}{\mathrm{~d} x / \mathrm{d} t}=\frac{-\sin (t) \sin (2 t)+2 \cos (t) \cos (2 t)}{\cos (t) \sin (2 t)+2 \sin (t) \cos (2 t)}
$$

So, at $t=\pi / 4$ and $t=-\pi / 4$ we get slopes

$$
y^{\prime}=\frac{-\sqrt{2} / 2}{\sqrt{2} / 2}=-1 \quad \text { and } \quad y^{\prime}=\frac{\sqrt{2} / 2}{\sqrt{2} / 2}=1
$$

Since the slopes multiply to -1 , the lines are perpendicular.
4) [20 points] The circumference of a sphere [i.e., the length of the "equator" of the sphere] was measured to be 8 cm , with possible error of 0.5 cm . Estimate the maximal error and the relative error that can occur with both surface area and volume of the sphere.
[Hint: If $r$ is the radius of a sphere, its circumference $C$, surface area $A$, and volume $V$ are given by $C=2 \pi r, A=4 \pi r^{2}$, and $V=4 \pi r^{3} / 3$ respectively. You might need to write $A$ and $V$ in terms of $C$ [instead of $r$ ].]

Solution. We have $C=2 \pi r$, and hence $r=C /(2 \pi)$. Then, $A=4 \pi(C /(2 \pi))^{2}=C^{2} / \pi$, and $V=4 \pi(C /(2 \pi))^{3} / 3=C^{3} /\left(6 \pi^{2}\right)$. I.e.,

$$
A=\frac{C^{2}}{\pi} \quad \text { and } \quad V=\frac{C^{3}}{6 \pi^{2}}
$$

So,

$$
\mathrm{d} A=\frac{2 C}{\pi} \mathrm{~d} C \quad \text { and } \quad \mathrm{d} V=\frac{3 C^{2}}{6 \pi^{2}} \mathrm{~d} C=\frac{C^{2}}{2 \pi^{2}} \mathrm{~d} C
$$

So, if $C=8$ and $\Delta C=0.5$, we get maximal errors

$$
\Delta A \approx 2 \cdot \frac{8}{\pi} \cdot 0.5=\frac{8}{\pi} \quad \text { and } \quad \Delta V \approx \frac{8^{2}}{2 \pi^{2}} \cdot 0.5=\frac{16}{\pi^{2}}
$$

Now, for $C=8$ we get $A=64 / \pi$ and $V=256 /\left(3 \pi^{2}\right)$. Then, the relative errors when $C=8$ are

$$
\frac{\Delta A}{A} \approx \frac{8 / \pi}{64 / \pi}=\frac{1}{8} \quad \text { and } \quad \frac{\Delta V}{V} \approx \frac{16 / \pi^{2}}{256 / 3 \pi^{2}}=\frac{3}{16} .
$$

5) [20 points] A 10 ft long ladder rests against a [vertical] wall. If the bottom of the ladder slides away from wall at a rate of $1 \mathrm{ft} / \mathrm{s}$, how fast is the top of the ladder sliding down the wall when the bottom of the ladder is 6 ft from the wall?

Solution. This is Example 2 on pg. 264 from the text.

