1) Compute the following limits. If they do not exist or are infinite, check if the side limits exist.
(a) [5 points] $\lim _{x \rightarrow-\infty} \frac{3 x^{3}-x+1}{x^{3}+x^{2}}$

Solution.

$$
\begin{aligned}
\lim _{x \rightarrow-\infty} \frac{3 x^{3}-x+1}{x^{3}+x^{2}} & =\lim _{x \rightarrow-\infty} \frac{x^{3}}{x^{3}} \frac{\left(3-1 / x^{2}+1 / x^{3}\right)}{(1+1 / x)} \\
& =\lim _{x \rightarrow-\infty} \frac{3-1 / x^{2}+1 / x^{3}}{1+1 / x}=\frac{3}{1}=3 .
\end{aligned}
$$

(b) [5 points] $\lim _{x \rightarrow 2} \frac{\frac{1}{x-1}-1}{x-2}$

Solution.

$$
\begin{aligned}
\lim _{x \rightarrow 2} \frac{\frac{1}{x-1}-1}{x-2} & =\lim _{x \rightarrow 2} \frac{1-(x-1)}{(x-1)(x-2)} \\
& =\lim _{x \rightarrow 2} \frac{-(x-2)}{(x-1)(x-2)} \\
& =\lim _{x \rightarrow 2} \frac{-1}{(x-1)} \\
& =\frac{-1}{1}=-1
\end{aligned}
$$

(c) [10 points] $\lim _{x \rightarrow 2} \frac{x^{2}+x-6}{(x-2)^{2}}$

Solution.

$$
\begin{aligned}
\lim _{x \rightarrow 2} \frac{x^{2}+x-6}{(x-2)^{2}} & =\lim _{x \rightarrow 2} \frac{(x-2)(x+3)}{(x-2)^{2}} \\
& =\lim _{x \rightarrow 2} \frac{x+3}{x-2}
\end{aligned}
$$

So, analyzing the signs,

$$
\begin{aligned}
\lim _{x \rightarrow 2^{+}} \frac{x^{2}+x-6}{(x-2)^{2}} & =\lim _{x \rightarrow 2^{+}} \frac{x+3}{x-2} \\
& =+\infty
\end{aligned}
$$

$$
\begin{aligned}
\lim _{x \rightarrow 2^{-}} \frac{x^{2}+x-6}{(x-2)^{2}} & =\lim _{x \rightarrow 2^{-}} \frac{x+3}{x-2} \\
& =-\infty
\end{aligned}
$$

(d) [10 points] $\lim _{x \rightarrow-\infty} \sqrt{x^{2}-3 x+1}-2 x$

## Solution.

$$
\begin{aligned}
\lim _{x \rightarrow-\infty} \sqrt{x^{2}-3 x+1}-2 x & =\lim _{x \rightarrow-\infty}\left(\sqrt{x^{2}-3 x+1}-2 x\right) \frac{\sqrt{x^{2}-3 x+1}+2 x}{\sqrt{x^{2}-3 x+1}+2 x} \\
& =\lim _{x \rightarrow-\infty} \frac{x^{2}-3 x+1-4 x^{2}}{\sqrt{x^{2}-3 x+1}+2 x} \\
& =\lim _{x \rightarrow-\infty} \frac{-3 x^{2}-3 x+1}{|x| \sqrt{1-3 / x+1 / x^{2}}+2 x} \\
& =\lim _{x \rightarrow-\infty} \frac{-3 x^{2}-3 x+1}{-x \sqrt{1-3 / x+1 / x^{2}}+2 x} \\
& =\lim _{x \rightarrow-\infty} \frac{x^{2}}{x} \frac{-3-3 / x+1 / x^{2}}{-\sqrt{1-3 / x+1 / x^{2}}+2} \\
& =\lim _{x \rightarrow-\infty} x \frac{3+3 / x-1 / x^{2}}{\sqrt{1-3 / x+1 / x^{2}}-2} \\
& =+\infty
\end{aligned}
$$

2) [ 15 points $]$ Compute the following derivative (using the formulas, no need for limits):

$$
\frac{\mathrm{d}}{\mathrm{~d} x}\left(\frac{x \cdot 2^{x}-2 x \sqrt{x}}{3 x^{4}-x^{2}+1}\right)
$$

## No need to simplify!

## Solution.

$$
\begin{aligned}
\frac{\mathrm{d}}{\mathrm{~d} x}\left(\frac{x \cdot 2^{x}-2 x \sqrt{x}}{3 x^{4}-x^{2}+1}\right) & =\frac{\frac{\mathrm{d}}{\mathrm{~d} x}\left(x \cdot 2^{x}-2 x \sqrt{x}\right) \cdot\left(3 x^{4}-x^{2}+1\right)-\left(x \cdot 2^{x}-2 x \sqrt{x}\right) \cdot \frac{\mathrm{d}}{\mathrm{~d} x}\left(3 x^{4}-x^{2}+1\right)}{\left(3 x^{4}-x^{2}+1\right)^{2}} \\
& =\frac{\frac{\mathrm{d}}{\mathrm{~d} x}\left(x \cdot 2^{x}-2 x^{3 / 2}\right) \cdot\left(3 x^{4}-x^{2}+1\right)-\left(x \cdot 2^{x}-2 x^{3 / 2}\right) \cdot\left(12 x^{3}-2 x\right)}{\left(3 x^{4}-x^{2}+1\right)^{2}} \\
& =\frac{\left(\frac{\mathrm{d}}{\mathrm{~d} x}\left(x \cdot 2^{x}\right)-3 x^{1 / 2}\right) \cdot\left(3 x^{4}-x^{2}+1\right)-\left(x \cdot 2^{x}-2 x^{3 / 2}\right) \cdot\left(12 x^{3}-2 x\right)}{\left(3 x^{4}-x^{2}+1\right)^{2}} \\
& =\frac{\left(\left(2^{x}+x 2^{x} \ln (2)\right)-3 x^{1 / 2}\right) \cdot\left(3 x^{4}-x^{2}+1\right)-\left(x \cdot 2^{x}-2 x^{3 / 2}\right) \cdot\left(12 x^{3}-2 x\right)}{\left(3 x^{4}-x^{2}+1\right)^{2}}
\end{aligned}
$$

3) [20 points] Let

$$
f(x)= \begin{cases}x^{3}, & \text { if } x<0 \\ x^{2}, & \text { if } x \geq 0\end{cases}
$$

Is $f(x)$ continuous at $x=0$ ? Is it differentiable? If so, compute $f^{\prime}(0)$. [Show work!]

Solution. We have:

$$
\lim _{x \rightarrow 0^{+}} f(x)=\lim _{x \rightarrow 0^{+}} x^{2}=0
$$

and

$$
\lim _{x \rightarrow 0^{-}} f(x)=\lim _{x \rightarrow 0^{-}} x^{3}=0 .
$$

So,

$$
\lim _{x \rightarrow 0} f(x)=0=f(0)
$$

and therefore $f$ is continuous at $x=0$.
Now,

$$
\lim _{h \rightarrow 0^{+}} \frac{f(0+h)-f(0)}{h}=\lim _{h \rightarrow 0^{+}} \frac{f(h)-0}{h}=\lim _{h \rightarrow 0^{+}} \frac{h^{2}}{h}=\lim _{h \rightarrow 0^{+}} h=0 .
$$

On the other hand,

$$
\lim _{h \rightarrow 0^{-}} \frac{f(0+h)-f(0)}{h}=\lim _{h \rightarrow 0^{-}} \frac{f(h)-0}{h}=\lim _{h \rightarrow 0^{3}} \frac{h^{3}}{h}=\lim _{h \rightarrow 0^{-}} h^{2}=0
$$

So, $f$ is differentiable and,

$$
f^{\prime}(0)=\lim _{h \rightarrow 0} \frac{f(0+h)-f(0)}{h}=0 .
$$

4) [15 points] Let $f(x)=x \mathrm{e}^{x}-x^{6}+1$. Show that $f(x)$ has at least two zeros [i.e., there are $a, b \in \mathbb{R}$, with $a \neq b$, such that $f(a)=f(b)=0]$.
Hint: I am not asking you to find these zeros, just show their existence. Also, e is approximately 2.72 .

Solution. We have: $f(0)=1$

$$
f(-1)=-\mathrm{e}^{-1}-1+1=-\frac{1}{\mathrm{e}}<0 .
$$

Hence, by the Intermediate Value Theorem, we have that $f(x)$ has a zero between -1 and 0 .
Also,

$$
f(2)=2 \mathrm{e}^{2}-2^{6}+1<2 \cdot 3^{2}-64+1=18-63=-45<0 .
$$

Hence, by the Intermediate Value Theorem, we have that $f(x)$ has a zero between 0 and 2 .
5) [20 points] The graph in the middle is the graph of $y=f^{\prime}(x)$ for some function $f$ such that $f(0)=0$. Sketch $y=f(x)$ in the grid above the given graph and beneath it sketch the graph of $y=f^{\prime \prime}(x)$.



