
Midterm (Take Home) – Solution

M552 – Abstract Algebra

1. Let R be a local ring, i.e., a commutative ring with 1 with a unique maximal ideal, say
I, and let M be a finitely generated R-modulo.

(a) [10 points] If N is a submodule of M and M = N + (I ·M), then M = N .

[Hint: Last semester I proved Nakayma’s Lemma for ideals. The same proof
works for [finitely generated] modules. [See Proposition 16.1 on pg. 751 of Dummit
and Foote.] Use it here.]

Proof. Since R is local, we have that its Jacobson radical is I.

Now, since M is finitely generated, then so is M/N . [Generated by the classes of
the generators of M .]

So, M/N = (N+IM)/N = (IM)/N = I(M/N). [More formally, let α = m+N ∈
M/N , with m ∈ M . But, M = N + (I ·M), and so there are n′ ∈ N , x′ ∈ I, and
m′ ∈ M , such that m = n′+x′m′. Hence, α = (n′+x′m′)+N = x′m′+N . Thus,
α ∈ I(M/N), and hence M/N = I(M/N) [since the other inclusion is trivial].]
By Nakayama’s Lemma, we have that M/N = 0, i.e., M = N .

(b) [30 points] Suppose further that M is projective [still with the same hypothesis
as above]. Prove that M is free.

[Hints: Look at M/(I ·M) to find your candidate for a basis. Use (a) to prove
it generates M . Then let F be a free module with the rank you are guessing to
be the rank of M and use (a) to show that the natural map φ : F → M is an
isomorphism.]

Proof. We have that M/(I ·M) ∼= (R/I) ⊗R M . Since I is a maximal ideal, we
have that R/I is a field, and hence, M/(I ·M) is a vector space. Let {x̄1, . . . , x̄n}
be a basis of this vector space. [Note, if M/IM = 0, then M = IM , and so, by
Nakayama’s Lemma, M = 0.]

Let {x1, . . . , xn} ⊆ M such that xi + I ·M = x̄i. Let N be submodule generated
by this set. Then, clearly, M = N + I ·M , and hence M = N by (a). So, we have
that {x1, . . . , xn} generates M .

[Now we will basically reprove the fact that if M is projective, than it’s a direct
summand of a free module. We do it to make the other summand explicit.] Let
F be a free R-module with basis {e1, . . . , en} and consider φ : F → M defined by
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φ(ei) = xi. Then, φ is clearly onto. Let K
def
= ker φ. This gives us the short exact

sequence:

0 −→ K
incl.−→ F

φ−→ M −→ 0.

Since M is projective, this sequence splits. So, F = M ⊗K. Now, suppose that
α = r1e1 + · · · + rnen ∈ K. Then, φ(α) = r1x1 + · · · + rnxn = 0 in M . So,
r̄1 ⊗ x̄1 + · · · + r̄n ⊗ x̄n = 0 in M/(I · M) [seen here as vector space over R/I].
Hence, since {x̄1, . . . , x̄n} is an R/I-basis of M/(I ·M), we have that r̄i = 0, i.e.,
ri ∈ I. Therefore, K ⊆ I · F .

But then, F = M ⊗K = M + I · F [where we identify M with its copy in F via
the splitting homomorphism]. So, by (a), we have that F = M , and hence M is
free.

Alternative proof: Here is a proof that a couple of you found. It’s actually
nicer than the one above [to which I led you through my hint].

Since, M is finitely generated, let {e1, . . . , en} be a generating set with minimal
size. [We may assume M 6= 0.] Let F and φ be as above [and deduce that
F = ker φ⊕M ].

Suppose that r1x1 + · · · + rnxn ∈ K = ker φ. Then, φ(r1x1 + · · · + rnxn) =
r1e1 + · · · rnen = 0. Thus, if any ri ∈ R − I, then it is a unit [since R is local].
But, if, without loss of generality, r1 ∈ R×, then, e1 = −r−1

1 r2e2 − · · · − r−1
1 rnen,

which would mean that {e2, . . . , en} generates M , contradicting our minimality
assumption. So, ri ∈ I for every i. Hence, K ⊆ IM , and, as above [in the
previous proof], we get F ∼= M .
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