Final (Take Home)

M552 - Abstract Algebra

May 6th, 2008

1. [20 points] Let K / F be an algebraic extension such that every non-constant $f(x) \in F[x]$ has at least one root in K. Prove that K is algebraically closed [and hence K is the algebraic closure of $F]$.
[Hint: Be careful with inseparability. Also, the Primitive Element Theorem might be useful.]

Proof. It suffices to show that $\bar{F} \subseteq K$ [as K / F is algebraic].
Let $\alpha \in \bar{F}$ and $f \stackrel{\text { def }}{=} \min _{\alpha, F}$. Let E be the splitting field of f over F [and hence E / F is normal]. By Proposition V.6.11 of Lang's book, we have that $E=E_{\mathrm{sep}} E_{\mathrm{pi}}$, with $E_{\text {sep }} / F$ normal and separable and $E_{\text {pi }} / F$ purely inseparable. Moreover, the
Now, $E_{\text {sep }} / F$ is finite $[$ since $[E: F] \leq(\operatorname{deg} f)!]$ and separable, so $E_{\text {sep }}=F[\beta]$. Let $g \stackrel{\text { def }}{=} \min _{\beta, F}$. Then, g has a root $\gamma \in K$ by assumption. But $E_{\text {sep }} / F$ is normal, hence $\gamma \in E_{\text {sep }}=F[\beta]$. But, since $[F[\gamma]: F]=\operatorname{deg} g=[F[\beta]: F]$, and hence, $E_{\text {sep }}=F[\beta]=F[\gamma] \subseteq K$.
Also, since E_{ip} / F is purely inseparable, for all $\beta \in E_{\mathrm{ip}}$, we have that β is the only solution of its minimal polynomial over F, since it's of the form $x^{p^{n}}-\beta^{p^{n}}$ [as seen in pg. 249 of Lang]. Hence, $\beta \in K$ and thus, $E_{\text {ip }} \subseteq K$.
So, we have that $\alpha \in E=E_{\text {sep }} E_{\mathrm{pi}} \subseteq K$. Since α was arbitrary, $\bar{F} \subseteq K$.
2. [20 points] Let K / F be an algebraic, but infinite extension. Let $G \stackrel{\text { def }}{=} \operatorname{Aut}(K / F)$. Prove that G is residually finite, i.e., that the intersection of all subgroups of G which are normal and of finite index $[\mathrm{in} G$] is $\{1\}$.

Proof. Let $\sigma \in G-\{1\}$. Then, there exists $\alpha_{1} \in K$ such that $\alpha_{2} \xlongequal{\text { def }} \sigma\left(\alpha_{1}\right) \neq \alpha_{1}$. Let $f \stackrel{\text { def }}{=} \min _{\alpha, F}$. Note that α_{2} is also a root of f, since it's irreducible and σ fixes F.
Let $\Omega \stackrel{\text { def }}{=}\left\{\alpha_{1}, \ldots, \alpha_{k}\right\}$ be all the roots of f in K. [Since K / F might not be normal, maybe we don't have all of them.] Since all $\tau \in G$ fixes F [and takes K to K], we have $\left.\tau\right|_{\Omega}$ induces a permutation of Ω. So, we have $\phi: G \rightarrow S_{\Omega}=S_{k}$, given by $\phi(\tau)=\left.\tau\right|_{\Omega}$.
Let $H \stackrel{\text { def }}{=}$ ker ϕ. Then, $H \triangleleft G$. Moreover, since $|G: H|=|\phi(G)| \leq\left|S_{k}\right|=k$! [as $G / H \cong \phi(G)]$, we have that H has finite index.
Now, observe that $\sigma \notin H$, since $\phi\left(\alpha_{1}\right)=\alpha_{2}$, and hence $\phi(\sigma) \neq 1$. So, for all $\sigma \in G-\{1\}$, there is $H \triangleleft G$ of finite index such that $\sigma \notin H$, and therefore, the intersection of all normal subgroups of finite index is $\{1\}$.

