Final (In Class Part)

M552 - Abstract Algebra

May 16th, 2008

1. Let R be the ring of real continuous functions $f(x)$ such that $f(x+\pi)=f(x)$, and M be the R-module of real continuous functions $g(x)$ such that $g(x+\pi)=-g(x)$. Let c and s be the usual cosine and sine functions [in M].
(a) Show that $R \not \equiv M$ [as R-modules]. [Hint: Use calculus.]
(b) Show that $(f, g) \mapsto(f c+g s,-f s+g c)$ is an isomorphism between $R \oplus R$ and $M \oplus M$ [even though $M \not \equiv R]$.
(c) Show that $f \mapsto f s \otimes s+f c \otimes c$ is an isomorphism between R and $M \otimes_{R} M$ [even though $M \not \equiv R$]. [Hint: Find an inverse.]

Proof. Suppose that $\phi: R \rightarrow M$ is an isomorphism. Then, $M=R \cdot \phi(1)$. If $f=\phi(1) \in$ M, then $f(0)=-f(\pi)$, and hence f has a root in $[0, \pi]$, say at x_{0}. Since $M=R \cdot f$, all $g \in M$ also have a zero at x_{0}. But $g(x) \stackrel{\text { def }}{=} \cos \left(x-x_{0}\right) \in M$, while $g\left(x_{0}\right)=1$. So, (a) is proved.

The map in (b) is clearly a homomorphism. If $f c+g s=0=-f s+g c$, then we can multiply the first equality by s and the second by c. Adding, we get $g\left(c^{2}+s^{2}\right)=0$, i.e., $g=0$. If we now multiply the first equality by c and the second by s and subtract them, we get that $f\left(c^{2}+s^{2}\right)=0$. Hence, the map is injective.

Now, let $u, v \in M$. Taking $f=c u-s v$ and $g=s u+c v$, we get that $(f, g) \mapsto(u, v)$ and hence the map is also onto.

The map given in (c), say Φ is clearly a homomorphism. Consider the map $\Psi: u \otimes v \rightarrow$ $u v$ [extended linearly to $M \otimes M$]. Note that $u v \in R$ and the map is well-defined [since the map is $(u, v) \mapsto u v$ is bilinear].
We have that $\Psi \circ \Phi(f)=\Psi(f s \otimes s+f c \otimes c)=f\left(s^{2}+c^{2}\right)=f$. Also, $\Phi \circ \Psi(u \otimes v)=$ $u v s \otimes s+u v c \otimes v=u \otimes v s^{2}+u \otimes v c^{2}=u \otimes v\left(s^{2}+c^{2}\right)=u \otimes v$. [Note that $c v, s v \in R$.]
2. Let R be a commutative with $1 \neq 0$ and M an R-module. Show that $\operatorname{Hom}_{R}(R \oplus R, M)$ is projective if, and only if, M is a projective R-module.

Proof. We have that $\operatorname{Hom}_{R}\left(N_{1} \oplus N_{2}, M\right) \cong \operatorname{Hom}_{R}\left(N_{1}\right) \oplus \operatorname{Hom}_{R}\left(N_{2}, M\right)$. Indeed Let Φ : $\operatorname{Hom}_{R}\left(N_{1} \oplus N_{2}, M\right) \rightarrow \operatorname{Hom}_{R}\left(N_{1}, M\right) \oplus \operatorname{Hom}_{R}\left(N_{2}, M\right)$, defined by $\Phi(\phi) \stackrel{\text { def }}{=}\left(\left.\phi\right|_{N_{1}},\left.\phi\right|_{N_{2}}\right)$. Then, it clearly is an isomorphism.
We also claim that $\operatorname{Hom}_{R}(R, M) \cong M$. Indeed, let $\Psi: \operatorname{Hom}_{R}(R, M) \rightarrow M$ be defined by $\Psi(\phi) \stackrel{\text { def }}{=} \phi(1)$. Then, it's clearly an isomorphism.
So, $\operatorname{Hom}_{R}(R \oplus R, M) \cong M \oplus M$. Now, if M is projective, then there exists an R-module N such that $M \oplus N=F$, with F free. Then $(M \oplus M) \oplus(N \oplus N)=F \oplus F$ is free. Hence, $M \oplus M \cong \operatorname{Hom}_{R}(R \oplus R, M)$ is projective. [So, we use the fact that a module is projective if, and only if, it is a direct summand of a free module.]
Conversely, if $M \oplus M$ is projective, then there is N such that $(M \oplus M) \oplus N=$ $M \oplus(M \oplus N)$ is free. Hence M is projective.
3. Let $f(x) \in F[x]$ be irreducible, with $F \subseteq \mathbb{R}$. Suppose that there is $\alpha_{0} \in \mathbb{C}-\mathbb{R}$ such that $f\left(\alpha_{0}\right)=0$ and $\left|\alpha_{0}\right|=1$. Show that if α is a root of $f(x)$, then so is $1 / \alpha$.

Proof. Since $\alpha \notin \mathbb{R}$, but $F \subseteq \mathbb{R}$, we have that $\bar{\alpha}_{0}$ is also a root of f [and $\alpha_{0} \neq \bar{\alpha}_{0}$]. But, since $\left|\alpha_{0}\right|=1$, we have that $\bar{\alpha}_{0}=\alpha_{0}^{-1}$.
Let K be the splitting field of f and $\alpha \in K$ be a root of f. Then, there exists $\sigma \in \operatorname{Gal}(K / F)$ [note it's separable, since we are in characteristic 0] such that $\sigma\left(\alpha_{0}\right)=\alpha$. But, since σ fixes F, it must take roots of f to roots of f. Hence, $\sigma\left(\alpha_{0}^{-1}\right)=\left(\sigma\left(\alpha_{0}\right)\right)^{-1}=$ α^{-1} is also a root of f [since $\bar{\alpha}_{0}=\alpha_{0}^{-1}$ is a root of $\left.f\right]$.
4. Let ζ_{n} be a primitive n-th root of unity, and $\alpha \in \mathbb{Q}\left[\zeta_{n}\right] \cap \mathbb{R}$, such that $\alpha^{m} \in \mathbb{Q}$ for some $m \geq 2$. Show that $\alpha^{2} \in \mathbb{Q}$.

Proof. We have that $\mathbb{Q}\left[\zeta_{n}\right] / \mathbb{Q}$ is Abelian, and hence $K \stackrel{\text { def }}{=} \mathbb{Q}\left[\zeta_{n}\right] \cap \mathbb{R}$ is Galois over \mathbb{Q}. Now, $f(x) \stackrel{\text { def }}{=} \min _{\alpha, \mathbb{Q}}(x) \mid\left(x^{m}-\alpha^{m}\right)$, so its roots are of the form $\alpha \zeta_{m}^{r}$, for some integer r, where ζ_{m} is a primitive m-th root of unity. But, since K / \mathbb{Q} is Galois, and $\alpha \in K$ is a root of f, all roots of f are in K. But since $\alpha \in K \subseteq \mathbb{R}$, we have that $\alpha \zeta_{m}^{r} \in K$ implies that $\zeta_{m}^{r} \in \mathbb{R}$. Thus, $\zeta_{m}^{r}= \pm 1$.
Thus, $f(x)=(x-\alpha)(x+\alpha)$ or $f(x)=(x-\alpha)$ [since these are all possible roots of f]. In either case, $\alpha^{2} \in \mathbb{Q}$.

