Final (In Class Part)

M552 – Abstract Algebra

May 16th, 2008

- 1. Let R be the ring of real continuous functions f(x) such that $f(x + \pi) = f(x)$, and M be the R-module of real continuous functions g(x) such that $g(x + \pi) = -g(x)$. Let c and s be the usual cosine and sine functions [in M].
 - (a) Show that $R \ncong M$ [as *R*-modules]. [Hint: Use calculus.]
 - (b) Show that $(f,g) \mapsto (fc + gs, -fs + gc)$ is an isomorphism between $R \oplus R$ and $M \oplus M$ [even though $M \ncong R$].
 - (c) Show that $f \mapsto fs \otimes s + fc \otimes c$ is an isomorphism between R and $M \otimes_R M$ [even though $M \ncong R$]. [Hint: Find an inverse.]
- **2.** Let R be a commutative with $1 \neq 0$ and M an R-module. Show that $\operatorname{Hom}_R(R \oplus R, M)$ is projective if, and only if, M is a projective R-module.
- **3.** Let $f(x) \in F[x]$ be irreducible, with $F \subseteq \mathbb{R}$. Suppose that there is $\alpha_0 \in \mathbb{C} \mathbb{R}$ such that $f(\alpha_0) = 0$ and $|\alpha_0| = 1$. Show that if α is a root of f(x), then so is $1/\alpha$.
- **4.** Let ζ_n be a primitive *n*-th root of unity, and $\alpha \in \mathbb{Q}[\zeta_n] \cap \mathbb{R}$, such that $\alpha^m \in \mathbb{Q}$ for some $m \geq 2$. Show that $\alpha^2 \in \mathbb{Q}$.