Final (In Class Part)

M552 - Abstract Algebra

May 16th, 2008

1. Let R be the ring of real continuous functions $f(x)$ such that $f(x+\pi)=f(x)$, and M be the R-module of real continuous functions $g(x)$ such that $g(x+\pi)=-g(x)$. Let c and s be the usual cosine and sine functions [in M].
(a) Show that $R \nsupseteq M$ [as R-modules]. [Hint: Use calculus.]
(b) Show that $(f, g) \mapsto(f c+g s,-f s+g c)$ is an isomorphism between $R \oplus R$ and $M \oplus M$ [even though $M \not \equiv R]$.
(c) Show that $f \mapsto f s \otimes s+f c \otimes c$ is an isomorphism between R and $M \otimes_{R} M$ [even though $M \not \equiv R$]. [Hint: Find an inverse.]
2. Let R be a commutative with $1 \neq 0$ and M an R-module. Show that $\operatorname{Hom}_{R}(R \oplus R, M)$ is projective if, and only if, M is a projective R-module.
3. Let $f(x) \in F[x]$ be irreducible, with $F \subseteq \mathbb{R}$. Suppose that there is $\alpha_{0} \in \mathbb{C}-\mathbb{R}$ such that $f\left(\alpha_{0}\right)=0$ and $\left|\alpha_{0}\right|=1$. Show that if α is a root of $f(x)$, then so is $1 / \alpha$.
4. Let ζ_{n} be a primitive n-th root of unity, and $\alpha \in \mathbb{Q}\left[\zeta_{n}\right] \cap \mathbb{R}$, such that $\alpha^{m} \in \mathbb{Q}$ for some $m \geq 2$. Show that $\alpha^{2} \in \mathbb{Q}$.
