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We first find upper bounds for the degrees of the coordinate functions

of the elliptic Teichmüller lift of an ordinary elliptic curve over a perfect field

of characteristic p > 0, giving exact conditions for the bound to be achieved.

Also, we give an algorithm to compute the reduction modulo p3 of the canonical

lift and the elliptic Teichmüller.

Next, motivated by coding theory, we look for lifts with degrees smaller

than the degrees of the elliptic Teichmüller, finding again some upper bounds.

We obtain some more precise information about those lifts modulo p3, such as

precise degrees and verify that we can lift of the Frobenius on the affine parts.

We again show how to compute those lifts.

We then compute lifts of hyperelliptic curves with “small” degrees, give

a lower bound for these degrees and conditions to achieve this bound. Finally,

we give an example of a lift that is possibly a Mochizuki lift.
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Chapter 1

Introduction

Let k be a perfect field of characteristic p > 0. An elliptic curve E over k

is ordinary if E[pr] = Z/pr
Z, for all r ≥ 1. If p 6= 2 and E is given by an

equation

E/k : y2
0 = f(x0),

then E is ordinary if, and only if, the coefficient of xp−1
0 of f(x0)

(p−1)/2, say A,

is non zero. (Theorem V.4.1 of [7].) This A is called the Hasse invariant of

E. (Note that this implies that if σ is the Frobenius of k and E is ordinary,

then Eσ is also ordinary. Also, our definition is different from the one given

in [7]: if A 6= 0, Silverman defines the Hasse invariant to be one.)

Ordinary elliptic curves have associated to them canonical lifts over

the ring of Witt vectors W (k) (see [2]), meaning that for every ordinary E/k

we have a unique (up to isomorphism) elliptic curve E/W (k), whose reduction

modulo p is E, and a lift of points τ : E(k̄) → E(W (k̄)), called the elliptic

Teichmüller lift, that is an injective group homomorphism. Moreover, if we

also denote by σ the Frobenius of W (k), i.e.,

(a0, a1, a2, . . . )
σ = (aσ

0 , a
σ
1 , a

σ
2 , . . . ) = (ap

0, a
p
1, a

p
2, . . . ),

1
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the canonical lift of Eσ is Eσ and if φ : E → Eσ is the Frobenius (for curves

over k), there exists a lift of the Frobenius associated to τ , i.e., a map, that

we will also denote by φ, from E to Eσ that makes the following diagram

commute:

E(W (k̄))
φ

−−−→ Eσ(W (k̄))

τ

x





x





τ

E(k̄)
φ

−−−→ Eσ(k̄)

(In fact, one has that φ(τ(P )) = τ(P )σ, for all P ∈ E(k̄).)

Thus

(x0, y0)
τ
7→ (x,y) = ((x0, x1, x2, . . . ), (y0, y1, y2, . . . )).

We notice that we can always identify E/W (k) with its Greenberg trans-

form G(E)/k, that is the infinite dimensional scheme given by the equations

(over k) that appear in the coordinates of the equation of E. With this iden-

tification, τ becomes simply

(x0, y0)
τ
7→ (x0, x1, x2, . . . , y0, y1, y2, . . . ).

(In this perspective, the map τ is defined over k.) As we shall soon verify

(proposition 2.2), the xn’s and yn’s are polynomials in x0 and y0.

Voloch and Walker in [9] applied this theory of canonical lifts of elliptic

curves to construct error-correcting codes. In that paper, the degrees of xn

and yn have some importance in estimating exponential sums, that tells us

how “good” the obtained codes possibly are.

In chapter 2 we analyze the degrees of the elliptic Teichmüller lift,

giving upper bounds and finding when the degrees are strictly less than those
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bounds. Also, we describe an algorithm to compute the reduction modulo p3

of canonical lifts explicitly.

While trying to compute canonical lifts, I found some lifts modulo p3

that I thought to be the canonical, but as it turned out, those lifts were defined

only on the affine part of the curve. On the other hand, those lifts had degrees

smaller than the elliptic Teichmüller itself, and for the purposes of constructing

codes, those might be even better, since smaller degrees would probably give

better codes. In chapter 3, we discuss the existence of such lifts, analyze the

possible degrees and check when the Frobenius will lift for the affine parts of

the curves.

Voloch and Walker in [8] also used non elliptic curves to construct codes.

On the other hand, if the genus of the curve is greater than 1, there is no lift

of the Frobenius. (See [5].) We can construct lifts though, by purely algebraic

techniques, which is done also in chapter 3 for hyperelliptic curves, since the

techniques are the same as the ones we would use for elliptic curves. But in

chapter 4 we look at the minimal possible degrees with a more theoretical

approach, finding a lower bound for the degrees and a necessary condition to

achieve that bound. (The condition also seems to be sufficient!)

Finally, on the last part of chapter 4, we try to find a Mochizuki lift

of a curve of genus 2 in characteristic 3. In [4], Mochizuki proves that if we

take off an appropriate set of (p − 1)(g − 2) points of an “ordinary” curve of

genus g over a perfect field of characteristic p, we have the existence of a lift

with “small” degrees for which the Frobenius lifts. Not many examples of such

lifts are known, and in this last part of the chapter, we follow an idea given to
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the author by Voloch, to try to find an example. We computed the lift modulo

p3 to verify that we can indeed lift the Frobenius, at least modulo p3.



Chapter 2

Degrees of the Elliptic Teichmüller Lift

2.1 Introduction

Let E/k be an ordinary elliptic curve over a perfect field k of characteristic

p > 0. If p 6= 2, 3, we will assume that such a curve is given by the equation:

E/k : y2
0 = x3

0 + a0x0 + b0.

Let

E/W (k) : y2 = x3 + ax + b,

be its canonical lift, where a = (a0, a1, . . . ) and b = (b0, b1, . . . ).

We will consider only ordinary elliptic curves, and thus, for p = 2 and

p = 3, we will always assume, by extending k if necessary, that E has the

forms y2
0 + x0y0 = x3

0 + a0 and y2
0 = x3

0 + x2
0 + a0 respectively, and we can

assume that their canonical liftings have similar forms.

Let τ : E(k̄) → E(W (k̄)), denote the elliptic Teichmüller lift of E:

(x0, y0)
τ
7→ (x,y) = ((x0, x1, x2, . . . ), (y0, y1, y2, . . . )),

or, identifying E/W (k) with its Greenberg transform G(E)/k, we can see τ as

(x0, y0)
τ
7→ (x0, x1, x2, . . . , y0, y1, y2, . . . ).

5
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For n > 1, theorem 4.1 in [9] tells us that deg xn ◦ τ ≤ 2n+1pn and

deg yn ◦ τ ≤ 3 (2p)n. In that same paper, better bounds were proved for n = 1

in proposition 4.2, and we use similar ideas to improve the bounds for n > 1.

The goal is to prove:

Theorem 2.1. An upper bound for the degrees of the composition of τ with

coordinate functions xn’s is (n+2)pn−npn−1, and with the yn’s is (n+3)pn−

npn−1.

We may sometimes write, for simplicity, xn meaning xn ◦ τ , and the

same for yn, x and y.

Proposition 2.2. The function xn is a polynomial in x0 and the function yn

is a polynomial in x0 and y0. Moreover, if p 6= 2, then yn is a product of y0

with a polynomial in x0.

Proof. We have that τ is a morphism from E to G(E). Thus, the maps have

to be given by rational functions on x0 and y0, over k. But using the equation

defining E, we may write

xn =
F1(x0) + y0G1(x0)

F2(x0) + y0G2(x0)
,

where the Fi’s and Gi’s are polynomials.

Since τ is injective, the only point mapped to O, the origin of E, is O,

the origin of E, i.e., τ maps the affine part of E into the affine part of E. So

xn cannot have poles in the affine part of E, and therefore the denominator of

xn can be taken to be constant. Thus, we can write

xn = F (x0) + y0G(x0),
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with F and G polynomials. A similar argument shows that yn is also a poly-

nomial in x0 and y0.

If (x0, y0) ∈ E(k̄), then its inverse with respect to the group law is

(x0,−y0), for p 6= 2, or (x0, x0 + y0), for p = 2. Since τ is a homomorphism,

for p 6= 2, we have that τ(x0,−y0) is the inverse of τ(x0, y0). But if

τ(x0, y0) = (x0, x1, . . . , xi, . . . , y0, y1, . . . , yi, . . . ) = (x,y),

since the inverse of (x,y) is (x,−y), we get

τ(x0,−y0) = (x,−y) = (x0, x1, . . . , xi, . . . ,−y0,−y1, . . . ,−yi, . . . ),

observing that for p 6= 2,

−s = −(s0, s1, . . . ) = (−s0,−s1, . . . ).

Thus, xn ◦ τ(x0, y0) = xn ◦ τ(x0,−y0), i.e., F (x0) + y0G(x0) = F (x0) −

y0G(x0), what gives us G = 0.

A similar argument with inverses gives the result for yn.

If p = 2, we just need to observe that xn(x0, y0) = xn(x0, x0 + y0), i.e.,

x0G(x0) = 0, for any x0. Thus G = 0 and xn is a polynomial in x0.

Thus, deg xn = − ordO xn and deg yn = − ordO yn. (Unless mentioned

otherwise, we will use the word “degree” for degree as functions on E, not

as polynomials.) Then, we may look at ordO instead of deg to prove the

theorem, i.e., it suffices to prove that ordO xn ≥ −(n + 2)pn + npn−1 and

ordO yn ≥ −(n+ 3)pn + npn−1.
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2.2 Witt Vectors and Valuations

Let p be a prime, and for any non-negative integer n consider

Wn(X0, . . . , Xn)
def
= Xpn

0 + pXpn−1

1 + · · · + pn−1Xp
n−1 + pnXn,

the corresponding Witt polynomial. Then, there exist polynomials Sn, Pn ∈

Z[X0, . . . , Xn, Y0, . . . , Yn] satisfying:

Wn(S0, . . . , Sn) = Wn(X0, . . . , Xn) +Wn(Y0, . . . , Yn) (2.1)

and

Wn(P0, . . . , Pn) = Wn(X0, . . . , Xn) ·Wn(Y0, . . . , Yn). (2.2)

(See [6].)

Thus, if s = (s0, s1, . . . ) and t = (t0, t1, . . . ) are Witt vectors, we have

by definition

s + t
def
= (S0(s0, t0), S1(s0, s1, t0, t1), . . . )

and

s · t
def
= (P0(s0, t0), P1(s0, s1, t0, t1), . . . ).

We may write, to simplify the notation,

Sn(s, t)
def
= Sn(s0, . . . , sn, t0, . . . , tn)

and

Pn(s, t)
def
= Pn(s0, . . . , sn, t0, . . . , tn).

We start with an elementary lemma that we shall use soon:
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Lemma 2.3. Let vp denote the p-adic valuation on Z. Then

vp

((

pt

i

)

pi

)

= t + i− vp(i), for i = 1, . . . , pt.

In particular,
(

pt

i

)

pi ≡ 0 (mod pt+1).

Proof. We prove it by induction on i. The case i = 1 is trivial. Now suppose

true for some i < pt and we prove for i + 1. We have

vp

((

pt

i + 1

)

pi+1

)

= vp

((

pt

i

)

pi p
t − i

i + 1
p

)

= t+ i− vp(i) + vp(p
t − i) − vp(i+ 1) + 1

= t+ (i+ 1) − vp(i+ 1) + (vp(p
t − i) − vp(i))

= t+ (i+ 1) − vp(i+ 1),

and the last equality holds since i < pt.

The last part is trivially true, since i > vp(i).

Now, let K be a field of characteristic p > 0, and let us consider W (K).

Since the entries of our Witt vectors are in characteristic p, we can use the

polynomials S̄n, P̄n ∈ Fp[X0, . . . , Xn, Y0, . . . , Yn], that are the reductions of

Sn, Pn modulo p, to give us the sum and product of Witt vectors.

We now introduce four technical lemmas that will be useful in estimat-

ing degrees.

Lemma 2.4. The monomials
∏

Xai

i

∏

Y
bj

j (disregarding the coefficient) oc-

curring in P̄n satisfy

∑

ai p
i =

∑

bj p
j = pn and

∑

i ai p
i +
∑

j bj p
j ≤ n pn.
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Moreover,

P̄n =
n
∑

i=0

Xpn−i

i Y pi

n−i + Q̄n,

where Q̄n ∈ Fp[X0, . . . , Xn−1, Y0, . . . , Yn−1] and has its monomials (as above)

satisfying
∑

i ai p
i +
∑

j bj p
j < npn.

Proof. We prove it by induction. The case n = 0 is trivial, since P̄0 = X0Y0.

Now assume the lemma true for all t ≤ n− 1. We have:

Pn =
1

pn

[

(Xpn

0 + · · ·+ pnXn)(Y pn

0 + · · · + pnYn)−
(

P pn

0 + · · · + pn−1P p
n−1

)]

= (Xpn

0 Yn +Xpn−1

1 Y p
n−1 + · · ·+XnY

pn

0 )

+
1

p
(Xpn

0 Y p
n−1 + · · ·+Xp

n−1Y
pn

0 )

...

+
1

pn
(Xpn

0 Y pn

0 ) −
1

pn
P pn

0 − · · · −
1

p
P p

n−1

+ p
(

Xpn−1

1 Yn +Xpn−2

2 (Y p
n−1 + pYn) + . . .

)

.

(2.3)

First we observe that the above polynomial has its coefficients in Z. Also the

part that is a multiple of p doesn’t contribute to P̄n, and so we can disregard

that last line of the equation above.

For t = 0, . . . , n − 1, write Pt = P̃t + pRt, where we collected all the

monomials of Pt that have coefficients divisible by p in pRt. By the induction

hypothesis, P̃t also satisfy the lemma. So, now we look at the contribution of

1
ptP

pt

n−t to P̄n: that is given by the monomials of P̃ pt

n−t (by lemma 2.3), which

have the form

∏

X
Ppn−t

r=1
air

i

∏

Y
Ppn−t

r=1
bjr

j ,
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where the
∏

X
air

i

∏

Y
bjr

j are monomials of P̃t for r = 1, . . . , pn−t. So,

∑

i





pn−t

∑

r=1

air



 pi =

pn−t

∑

r=1

[

∑

i

airp
i

]

=

pn−t

∑

r=1

pt = pn,

(and the analogous for the bjr
also holds) and

∑

i

i





pn−t

∑

r=1

air



 pi +
∑

j

j





pn−t

∑

r=1

bjr



 pj

=

pn−t

∑

r=1

[

∑

i

iairp
i +
∑

j

jbjr
pj

]

≤ tpn < npn.

Observing that the last line of the equation (2.3) won’t contribute to

P̄n, all the remaining terms are of the form Xpn−i

i Y pn−j

j . Excluding the ones

of the form Xpn−i

i Y pi

n−i, the remaining are such that i + j < n, and the lemma

follows.

Now, let v : K → R ∪ {∞} be a valuation of K. For e ≥ 0, define:

U(e)
def
=
{

s = (s0, s1, . . . ) ∈ W (K)× | v(sn) ≥ pn(v(s0) − ne), for all n > 0
}

.

(Note that W (K)× = {s = (s0, s1, . . . ) ∈ W (K) | s0 6= 0}.)

Lemma 2.5. The set U(e) is a subgroup of W (K)×.

Proof. Let s, t ∈ U(e). We have that the (n+ 1)-th coordinate of s t is given

by P̄n(s, t). By lemma 2.4, for each monomial of P̄n(s, t) we have:

v
(

∏

sai

i

∏

t
bj

j

)

=
∑

aiv(si) +
∑

bjv(tj)

≥
∑

aip
i(v(s0) − ie) +

∑

bjp
j(v(t0) − je)

≥ pn(v(s0) + v(t0) − ne).

(2.4)
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Therefore, v(P̄n(s, t)) ≥ pn(v(s0t0)− ne) for all n, i.e., s t ∈ U(e). (Note that

since all elements of F
×
p are roots of unity, v is zero on all its elements, and we

don’t have to worry about the coefficients of the monomials in P̄n.)

We prove that t
def
= s−1 ∈ U(e) by induction on the coordinate: assume

that for all i < n we have v(ti) ≥ pi(v(t0) − ie). We observe that:

P̄n(s, t) = tn s
pn

0 + · · · = 0

where no omitted term involves tn. So, v(tn s
pn

0 ) is equal to the valuation of

the omitted terms. But for those, we can use (2.4), and so

v(tn s
pn

0 ) ≥ pn(v(s0) + v(t0) − ne),

and this gives us v(tn) ≥ pn(v(t0) − ne).

Lemma 2.6. Let s, t ∈ U(e), and assume v(t0) > v(s0). Then v(S̄n(s, t)) ≥

pn(v(s0) − ne). Moreover, if e > 0, the equality holds if, and only if, v(sn) =

pn(v(s0) − ne).

Proof. We prove by induction on n. For n = 0, it is trivial, since S̄0(s, t) =

s0 + t0. We have

Sn =(Xn + Yn) +
1

p
(Xp

n−1 + Y p
n−1 − Sp

n−1) + · · ·+
1

pn
(Xpn

0 + Y pn

0 − Spn

0 ),

and again we observe that this polynomial has integer coefficients. Notice

that, when taking the valuation in S̄n, we can again disregard the coefficients

of the monomials
∏

Xai

i

∏

Y
bj

j that appear in Sn. So, we assume (inductively)

that every monomial of that form in St, for t = 0, . . . , (n − 1), is such that
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v(
∏

sai

i

∏

t
bj

j ) ≥ pt(v(s0) − te). So, the monomials of Spn−t

t are products of

pn−t monomials of St, and therefore they have valuation, when computed at

s and t, greater than or equal to pn−tpt(v(s0) − te) ≥ pn(v(s0) − ne), and

equality never holds if e > 0. The remaining monomials of Sn are of the

forms Xpn−i

i and Y pn−j

j . The former gives valuations greater than or equal to

pn(v(s0) − ie) ≥ pn(v(s0) − ne), and if e > 0, we have the equality only for

i = n and v(sn) = pn(v(s0) − ne). The latter gives valuation greater than or

equal to pn(v(t0) − je) > pn(v(s0) − ne), which finishes the proof.

Lemma 2.7. If v(s0) = 1 and v(sn) ≥ 1 for all n, then s ∈ U((p− 1)/p).

Proof. Just note that v(sn) ≥ 1 ≥ pn[1− n(p− 1)/p] = npn−1 − (n− 1)pn.

2.3 Upper Bounds

Now let K denote the function field of E/k̄ and K be the function field of E

over the field of fractions k of W (k̄). An element of g ∈ K can be written

as a quotient g1/g2, where g1, g2 ∈ W (k̄)[x,y]. Let R be ring of functions

g = g1/g2 ∈ K (as above), such that g2 6≡ 0 (mod p) (i.e., R is the valuation

ring of K with respect to the valuation associated to p). Then, for every

g ∈ R, we have that g = (g0, g1, . . . ) ∈ W (K), and if g is regular at τ(P ), for

P ∈ E(k̄), then g(τ(P )) = (g0(P ), g1(P ), . . . ).

Observe that since ordO x/y = ordO y/x2 = 1, both x/y and y/x2

satisfy the conditions of lemma 2.7, and thus they are in the subgroup U((p−

1)/p) of R×. This implies that x and y are also in that group, which proves
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theorem 2.1.

In fact the same idea can be used to prove a more general statement:

Theorem 2.8. Let g = (g0, g1, . . . ) ∈ R× such that ordP g0 = ordτ(P ) g for

some P ∈ E(k̄). Then

ordP gn ≥ pn(ordP (g0) − n) + npn−1.

Proof. Let π ∈ R× be such that ordτ(P ) π = 1, i.e., a uniformizer at τ(P ).

(Note we can choose π as either (x−x(τ(P ))), y or x/y, and so ordP π0 = 1.)

By lemma 2.7, π ∈ U((p − 1)/p), now with v
def
= ordP . In the same way,

π1−v(g0)g ∈ U((p− 1)/p). Since U((p− 1)/p) is a group, g ∈ U((p− 1)/p).

We observe that if ordτ(P ) g < 0, then the theorem above gives us upper

bounds for the order of the poles of the gn’s, for all n ≥ 0. If ordτ(P ) g > 0, the

theorem still gives us some information: it gives lower bounds for the order of

the zeros for n < p(ordP g0)/(p− 1).

2.4 Leading Coefficients

Our main goal in this section is to verify when we don’t have the equality in

the upper bounds of theorem 2.1. But since the same techniques give stronger

results, we will obtain these results first, and then get our main goal as a

corollary.

Let g be a function as in the theorem 2.8 and let π0 be a uniformizer
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at P . Let the expansion of gn in terms of π0 be

gn = bn(g)π
pn(ordP (g0)−n)+npn−1

0 + . . . , (2.5)

where the omitted terms have higher powers of π0 (by theorem 2.8). We call

bn(g) ∈ k the n-th leading coefficient of g at P , relative to π0.

Let P ∈ E(k̄) and, for p 6= 2, define

π
def
=











x/y, if P = O;

(x − x(τ(P ))), if 2P 6= O;

y, otherwise.

(2.6)

For p = 2, we define

π
def
=











x/y, if P = O;

(x − x(τ(P ))), if x0(P ) 6= 0;

y, if x0(P ) = 0;

(2.7)

So π is a uniformizer at τ(P ). (Remember that τ is an injective homo-

morphism.) Also, if we write π = (π0, π1, . . . ), we have that π0 is a uniformizer

at P . Moreover, ordP πn ≥ 0 for all n ≥ 0. Then, write

π1 = α π0 + . . .

where the omitted terms have larger powers of π0. We have then:

Theorem 2.9. Let π be as above and g as in theorem 2.8. Let v0
def
= ordP g0

and write

g = cπv0 + . . . (c = (c0, c1, . . . ) ∈ W (k))

where the omitted terms have larger powers of π. We then have

bn(g)

cp
n

0

=

(

v0

n

)

αnpn−1

.
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Proof. Note that the theorem is trivially true for π itself: for n > 1, pn(1 −

n) + npn−1 < 0, and since ordP πn > 0, bn(π) = 0 for n > 1.

Now, by induction, we prove that the theorem is true for πr, with r > 0:

suppose the theorem is true for πr−1. Write

πr−1 = (u0, u1, . . . ) and πr = (v0, v1, . . . ).

Then

vn =
n
∑

i=0

πpn−i

i upi

n−i + . . .

where all the omitted terms have order larger than pn(r−n)+npn−1, by lemma

2.4. Thus,

bn(πr) =
n
∑

i=0

bi(π)pn−i

bn−i(π
r−1)pi

=

[

n
∑

i=0

(

1

i

)(

r − 1

n− i

)

]

αnpn−1

=

[

1
∑

i=0

(

1

i

)(

r − 1

n− i

)

]

αnpn−1

=

(

r

n

)

αnpn−1

.

For r < 0, we prove by induction on n. Let

π−r = (u0, u1, . . . ) and πr = (v0, v1, . . . ).

Suppose true for i = 0, . . . , n− 1. Then,
n
∑

i=0

upn−i

i vpi

n−i + · · · = 0

where all the omitted terms have order larger than −npn + npn−1. So, the

terms of order −npn + npn−1 have to cancel, i.e.,

b0(π
−r)pn

bn(πr) = −
n
∑

i=1

bi(π
−r)pn−i

bn−i(π
r)pi

= −

n
∑

i=1

(

−r

i

)(

r

n− i

)

αnpn−1

=

(

−r

n

)

αnpn−1

,
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what gives the result, since b0(π
−r)pn

= 1.

For cπr, by looking at the expression (2.3) and using lemma 2.4, one

can check that the leading term will just be multiplied by cpn

0 : write πr =

(u0, u1, . . . ) and consider the monomials in P̄n of the form
∏

Xai

i

∏

Y
bj

j . Then,

defining v
def
= ordP , in the (n + 1)-th coordinate of cπr we have valuations of

the form

v
(

∏

uai

i

∏

c
bj

j

)

=
∑

ai v(ui)

≥ r
[

∑

ai p
i
]

−
p− 1

p

[

∑

ai i p
i
]

≥ rpn −
p− 1

p
npn,

and it is clear that the equality can occur only if the monomial is XnY
pn

0 .

Thus, the formula is true for cπr.

Finally we observe that if we write g as in the statement of the theorem,

the higher powers of π will contribute to the (n+1)-th coordinate with terms

with powers of π0 higher than pn(v0 − n) + npn−1 (as one can see from the

proof of lemma 2.6), and so bn(g) = bn(cπv0), and our formula holds for g.

Then, using the same notation as before, the above theorem tells us

that the map

Φ : g 7→
1

c0

[

∞
∑

n=0

bn(g)p−n

T n

]

,

is such that Φ(g) = (1 + αp−1

T )v0 .
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Now, assuming p 6= 2, we compute the α’s for the three distinct choices

of π. Assume that E is given by

E/k : y2
0 = f(x0).

Let P = (r0, s0), such that 2P 6= O. Then, we take the uniformizer at τ(P ) =

(r, s) given by (x − r). So,

π1 = x1 − r1 +
xp

0 − rp
0 − (x0 − r0)

p

p
(r1

def
= x1(r0)).

(We here face a small notation problem: the above expression is in characteris-

tic p, and so it would make no sense dividing by p. One should read an expres-

sion as the one above in the following way: first to consider a corresponding

polynomial in characteristic zero, in this case t(x, r)
def
= ((xp−rp)−(x−r)p)/p ∈

Z[x, r], and then read:

xp
0 − rp

0 − (x0 − r0)
p

p
def
= t(x0, r0).

Unfortunately this abuse of notation will appear several times, but we hope

that no confusion will arise from it.)

Note that π1 is a polynomial in x0, and therefore, α = dπ1/dx0|x0=r0
.

But

dπ1

dx0
=
dx1

dx0
+ xp−1

0 − (x0 − r0)
p−1.

We observe that from the proof of proposition 4.2 in [9], one can deduce:

dx1

dx0
= A−1yp−1

0 − xp−1
0 = A−1f(x0)

(p−1)/2 − xp−1
0 , (2.8)

for p 6= 2, where A is the Hasse invariant of the curve. (Note that A 6= 0, since

our elliptic curve is ordinary.)
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Therefore,

dπ1

dx0

= A−1f(x0)
(p−1)/2 − (x0 − r0)

p−1,

and hence,

α = A−1f(r0)
(p−1)/2.

(Note that since 2P 6= O, α 6= 0.)

If P = (r0, s0) is finite and 2P = O, then f(r0) = 0, or s0 = 0. So, we

take π = y, and if we write y1 = y0F1(x0), where F1 is a polynomial, then we

have α = F1(r0).

To try to find a more explicit expression for F1(r0), we look at the

reduction modulo p2 of the equation of E. We assume here p 6= 3. The case

p = 3 can be easily calculated, and gives similar results. So for p 6= 2, 3, we

take f(x0) = x3
0 + a0x0 + b0. Then, the second coordinate of the equation of

E/W2(k), namely

(y0, y1)
2 = (x0, x1)

3 + (a0, a1)(x0, x1) + (b0, b1),

is given by:

2yp
0y1 = 3x2p

0 x1 + ap
0x1 + a1x

p
0 + b1

+
1

p

(

x3p
0 + ap

0x
p
0 + bp0 − (x3

0 + a0x0 + b0)
p
)

.
(2.9)

Writing y2
0 = f(x0) and y1 = y0F1(x0), we get:

2f(x0)
(p+1)/2F1(x0) = 3x2p

0 x1 + ap
0x1 + a1x

p
0 + b1

+
1

p

(

x3p
0 + ap

0x
p
0 + bp0 − (x3

0 + a0x0 + b0)
p
)

.
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Taking derivatives with respect to x0 of both sides, one gets

f ′(x0)F1(x0) + 2f(x0)
dF1

dx0

(x0) = f ′(x0)
[

A−1f ′(x0)
p−1 − f(x0)

(p−1)/2
]

.

(We observe that the formula above is also true for p = 3, as one can easily

check.) So, α = F1(r0) = A−1f ′(r0)
p−1. Note that since the curve is non-

singular, we have that f ′(r0) 6= 0.

Finally let P = O. Then, we take π = x/y, and we have

π1 =
x1

yp
0

−
y1x

p
0

y2p
0

.

We observe that

x0 =

(

x0

y0

)−2

+ . . . and y0 =

(

x0

y0

)−3

+ . . . . (2.10)

So, if x1 = βx
(3p−1)/2
0 + . . . and y1 = y0(γx

2p−2
0 + . . . ), then we have

π1 = (β − γ)
x0

y0
+ . . . .

Since dx1/dx0 = A−1f(x0)
(p−1)/2 − xp−1

0 , we have that β = −2A−1. For p 6= 3,

by looking at the terms of highest degrees in the equation (2.9), one gets that

γ = 2/3 β = −3A−1. So, in this case, α = A−1. For p = 3, we refer to [9],

where x1 and y1 where computed. We get then α = A−1 = 1. (Remember

that, by our choice of the form of f(x0) for p = 3, we always have A = 1.)

For P = O and p = 2, we can follow the same idea above, and we also

have formulas for x1 and y1 in [9]. Those give us α = 1.

Hence:
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Corollary 2.10. We have deg xn < (n+2)pn−npn−1 if, and only if, p divides

(n+1), and deg yn < (n+3)pn−npn−1 if, and only if, p divides (n+1)(n+2)/2.

Proof. First, we remember that for xn and yn we have deg = − ordO. So the

order of xn (resp. yn) is larger than (−2−n)pn+npn−1 (resp. (−3−n)pn+npn−1)

if, and only if, bn(x) = 0 (resp. bn(y) = 0), relative to the uniformizer π =

x/y.

But by theorem 2.9,

bn(x) =

(

−2

n

)

αnpn−1

= (−1)n(n+ 1)αnpn−1

and

bn(y) =

(

−3

n

)

αnpn−1

= (−1)n (n+ 1)(n+ 2)

2
α−npn−1

,

what gives the result, since α 6= 0.

Remark. Note that since xn is a polynomial, we have that the degree of xn

as a polynomial in x0 is less than or equal to r
def
= [(n+ 2)pn − npn−1] /2, and

bn(x) is also the coefficient of xr
0 in xn (using equation (2.10)). Also, if we

write yn = y0Fn, where Fn is a polynomial in x0, then the degree of Fn as a

polynomial in x0 is less than or equal to s
def
= [(n+ 3)pn − npn−1 − 3] /2, and

its coefficient of xs
0 is bn(y) (again, using (2.10)).

2.5 Reduction Modulo p3

In the next section we will describe an algorithm to compute the reduction

modulo p3 of the canonical lift and the elliptic Teichmüller map explicitly for
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p 6= 2, 3. To make sure that our computation gives us the right answer, we

introduce the following sufficient condition:

Proposition 2.11. Let k be a perfect field of characteristic p > 0. If E/Wn+1(k)

is an elliptic curve with reduction E, and if we have a section τ of the reduction

from G(E) to E, in the category of k-schemes over E\{O}, given by

(x0, y0) 7→ (x,y) = ((x0, . . . , xn), (y0, . . . , yn)),

where x/y is regular at O with x/y(O) = 0, then E is the canonical lift of E

and τ is the elliptic Teichmüller lift.

Proof. The proof is just the last paragraph of the proof of proposition 4.2 in

[9].

Note that in the general case, in contrast to what happens for the

second coordinate (see proposition 4.2 in [9]), is not enough that deg(xi) ≤

(n + 2)pn − npn−1 and deg(yi) ≤ (n + 3)pn − npn−1 instead of x/y(O) = 0:

e.g., in characteristic 5, considering just the first three coordinates, we have

that the elliptic curve

y2 = x3 + x

has reduction y2
0 = x3

0 + x0, and the map

ν(x0, y0)
def
= ((x0, 4x

7
0 + x3

0, 4x
5
0 + 3x13

0 + 2x15
0 + 2x17

0 + x19
0 + 4x23

0 +

3x25
0 + x27

0 + 4x31
0 + 3x33

0 + 2x37
0 ),

(y0, y0(x
8
0 + 2x6

0 + 2x4
0 + x2

0 + 3),

y0(x
56
0 + 2x54

0 + x52
0 + 3x48

0 + 3x44
0 + 2x42

0 + x40
0 + 2x38

0 + x36
0 + 2x34

0 + 3x32
0 + 4x30

0

+ x26
0 + 3x24

0 + x16
0 + x14

0 + x10
0 + 4x8

0 + 3x6
0 + 3x2

0 + 4))),
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is a section of the reduction, but this map is not such that

ν∗(x/y) = (x ◦ ν) / (y ◦ ν)

is regular at O, and therefore, this is not the elliptic Teichmüller lift. Using

the techniques introduced later, we can compute the correct map:

τ(x0, y0)
def
= ((x0, 4x

7
0 +x3

0, 4x
5
0 +3x13

0 +4x15
0 +2x17

0 +x19
0 +4x23

0 +x27
0 +4x31

0 +

3x33
0 + x35

0 + 2x37
0 + 2x45

0 ),

(y0, y0(x
8
0 + 2x6

0 + 2x4
0 + x2

0 + 3),

y0(4x
56
0 +3x54

0 +4x52
0 +3x48

0 +3x44
0 +2x42

0 +x40
0 +2x38

0 +2x32
0 +4x30

0 +4x26
0 +4x24

0

+ 3x22
0 + 4x14

0 + 4x12
0 + x10

0 + 4x8
0 + 4x6

0 + 2x4
0 + 4x2

0 + 4))).

Now, we proceed trying to find properties that will allow us to compute

explicitly coordinates of the coefficients of the canonical lift and the elliptic

Teichmüller. We first observe that a method to compute the second coordi-

nates can be derived from results in [9]. So, we try to obtain the analogues of

those results to deduce a way to compute the third coordinates.

As we observed before,

dx1

dx0
= A−1yp−1

0 − xp−1
0

for p 6= 2. Following the same idea:

Proposition 2.12. For p 6= 2, we have

dx2

dx0

= A−(p+1)yp2−1
0 − xp2−1

0 − xp−1
1 (A−1yp−1

0 − xp−1
0 ).
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Proof. We consider the differential

1

p
φ∗

(

1

p
φ∗

(

dx

y

))

,

where φ is the lift of the Frobenius. This is a well-defined holomorphic differen-

tial on E, and its reduction modulo p, say ω, depends only on dx/y. (See [3].)

On one hand, since this differential is holomorphic, it has the form αdx/y,

where α ∈ W (k), and so its reduction modulo p has the form α0dx0/y0, where

α0 is just the reduction of α.

If we apply the Cartier operator, we get

C(ω) = C

(

α0
dx0

y0

)

= α
1/p
0 A1/pdx0

y0
. (2.11)

On the other hand, by [1], we know that the p-derivation

δu
def
=

uσ ◦ φ− up

p
, (2.12)

where uσ is obtained by applying the Frobenius σ for Witt vectors on the

coefficients of u, is such that the reduction modulo p of δix is equal to xi +Pi,

where Pi is a polynomial in x0, . . . xi−1 that we can compute explicitly. (Note

that Pi is not the polynomial that defines the Witt product. From now on,

we won’t use those anymore, and the Pi’s will always denote these universal

polynomials arising from the reduction modulo p of δix.) For i = 1 such a

polynomial is zero, and for i = 2 (and p 6= 2),

P2(x0, x1)
def
= −x

p(p−1)
0 x1.
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Since u ◦ φ = pδu + up, we get

1

p
φ∗

(

1

p
φ∗

(

dx

y

))

=
1

p
φ∗

(

d(δx) + xp−1dx

pδy + yp

)

=
d(δ2x) + (δx)p−1d(δx) + (pδx + xp)p−1(d(δx) + xp−1dx)

p(p δ2y + (δy)p) + (pδy + yp)p
.

The reduction of such differential modulo p, that is again ω, is

d(x2 − x
p(p−1)
0 x1) + xp−1

1 dx1 + x
p(p−1)
0 (dx1 + xp−1

0 dx0)

yp2

0

=
dx2 + xp−1

1 dx1 + xp2−1
0 dx0

yp2

0

,

and computing the Cartier operator using this form of ω and using (2.8), we

get

C(ω) =
1

yp
0

(dx1 + xp−1
0 dx0) = A−1dx0

y0
. (2.13)

Comparing equations (2.11) and (2.13), we get that α0 = A−(p+1), and

comparing the two forms for ω, we have

dx2

dx0
= A−(p+1)yp2−1

0 − xp2−1
0 − xp−1

1 (A−1yp−1
0 − xp−1

0 ).

Remark. We note that for characteristic 2, similar computations would give

dx1

dx0
=
dx2

dx0
= 0.
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Hence, the proposition above allows us to find x2, except for finitely

many terms of the form dnx
np
0 . (We can find the number of missing terms from

the bounds for the degree.)

Now, we take a closer look at the quotient x/y up to the third coordi-

nate. In this case we have:

x

y
=

(

x0

y0
,
x1

yp
0

−
y1x

p
0

y2p
0

,−
xp

1y
p
1

y2p2

0

+
x2

yp2

0

+
xp2

0 y
2p
1

y3p2

0

−
xp2

0 y2

y2p2

0

+
1

p

(

xp
1

yp2

0

−
yp

1x
p2

0

y2p2

0

−

(

x1

yp
0

−
y1x

p
0

y2p
0

)p
))

.

Looking at the orders in the third coordinate, we see that

1

p

(

xp
1

yp2

0

−
yp

1x
p2

0

y2p2

0

−

(

x1

yp
0

−
y1x

p
0

y2p
0

)p
)

has already positive order at O, and that all the summands in

−
xp

1y
p
1

y2p2

0

+
x2

yp2

0

+
xp2

0 y
2p
1

y3p2

0

−
xp2

0 y2

y2p2

0

(2.14)

have the same order, namely −p2 + 2p. (Note that the orders of x2 and y2 are

precisely −4p2 + 2p and −5p2 + 2p, as we may see from our analysis of the

leading coefficients.) But since τ ∗(x/y)(O) = 0, those terms have to add up

to have positive order.

Now for p 6= 2, 3, looking at the third coordinates of the expression of

our elliptic curve, we have that

xp2

0 y2

y2p2

0

=
xp2

0

2y3p2

0

(2yp2

0 y2)

=
xp2

0

2y3p2

0

(

3x2p2

0 x2 + 3xp2

0 x
2p
1 − y2p

1 + . . .
)

,
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where the terms not shown have order greater than −7p2, and so when multi-

plied by xp2

0 /2y
3p2

0 , they give terms of positive order.

So, the part of (2.14) that has to add up to have positive order is

−
xp

1y
p
1

y2p2

0

+
x2

yp2

0

+
xp2

0 y
2p
1

y3p2

0

−
xp2

0

2y3p2

0

(

3x2p2

0 x2 + 3xp2

0 x
2p
1 − y2p

1

)

= −
xp

1y
p
1

y2p2

0

+
x2

yp2

0

+
2−13xp2

0 y
2p
1

y3p2

0

−
2−13x3p2

0 x2

y3p2

0

−
2−13x2p2

0 x2p
1

y3p2

0

.

Looking at the second coordinate of the equation of the elliptic curve,

we get

y1 =
2−13x2p

0 x1 + . . .

yp
0

,

where all the terms on the numerator omitted are of order greater than −6p.

Then, the part of xp
1y

p
1/y

2p2

0 that has negative order is

2−13x2p2

0 x2p
1

y3p2

0

,

and the part of 2−13xp2

0 y
2p
1 /y

3p2

0 that has negative order is

8−127x5p2

0 x2p
1

y5p2

0

.

So, the part of (2.14) that has to add up to have positive order is

−
2−13x2p2

0 x2p
1

y3p2

0

+
x2

yp2

0

+
8−127x5p2

0 x2p
1

y5p2

0

−
2−13x3p2

0 x2

y3p2

0

−
2−13x2p2

0 x2p
1

y3p2

0

= y−5p2

0

[

−
3

2
x2p2

0 x2p
1 y

2p2

0 + x2 y
4p2

0 +
27

8
x5p2

0 x2p
1 −

3

2
x3p2

0 x2 y
2p2

0 −
3

2
x2p2

0 x2p
1 y

2p2

0

]

.

Using

y2
0 = x3

0 + a0x0 + b0,
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and noticing that the part of the above expression that has to add up to have

positive order is the part inside the brackets that has order at most −15p2, we

get that

y−5p2

0

[

−
3

2
x5p2

0 x2p
1 + x2 x

6p2

0 +
27

8
x5p2

0 x2p
1 −

3

2
x6p2

0 x2 −
3

2
x5p2

0 x2p
1

]

=
x5p2

0

y5p2

0

[

3

8
x2p

1 −
1

2
xp2

0 x2

]

has to add up to have positive order, i.e., the parts of order smaller or equal

to −5p2 inside the brackets above have to cancel out. Since those terms are

polynomials in x0, we get that the coefficient of xnp
0 in x2 is 3/4 times the pth

power of the coefficient of xn+p
0 in x2

1, for all n ≥ (3p + 1)/2. (Note that by

proposition 2.12, we knew that all the terms of degree, as a polynomial in x0,

higher than (3p2 − 1)/2 in x2 have to come from terms of the form dnx
np
0 .)

Therefore, in the computation of the elliptic Teichmüller, some of the missing

coefficients of x2 can be obtained from coefficients of x1.

Thus, this analysis, along with proposition 2.11, allows us to deduce

the following theorem:

Theorem 2.13. If p 6= 2, 3 and E/W3(k) is an elliptic curve with reduction

E, and if we have a section τ of the reduction from G(E) to E, in the category

of k-schemes over E\{O}, given by

(x0, y0) 7→ (x,y) = ((x0, x1, x2), (y0, y1, y2)),

such that E and τ are the canonical lift and the elliptic Teichmüller modulo p2,

then the same is true modulo p3 if, and only if, deg[xp2

0 x2 − 3/4 x2p
1 ] ≤ 5p2 − 1.

In fact, if this inequality holds, we must have the equality.
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Proof. The only part not discussed before is the last statement. For it, it just

suffices to observe that proposition 2.12 implies that the coefficient of x
(3p2−1)/2
0

in x2 is not zero (it is −2A−(p+1)) and that x2p
1 just has p powers of x0.

2.6 The Algorithm

So now we see how to compute the canonical lifting and the elliptic Teichmüller

explicitly, up to the third coordinate. In this whole section, we assume p 6= 2, 3.

First we compute x1 by integrating formally the formula (2.8), and we

leave the constant term, say c0, and the coefficient of the term in xp
0, say c1,

as indeterminates.

Since y1 is y0 times a polynomial in x0, equation (2.9) (keeping a1 and

b1 as indeterminates) tells us that the division of polynomials (in x0)

3x2p
0 x1 + ap

0x1 + a1x
p
0 + b1 + 1

p

(

x3p
0 + ap

0x
p
0 + bp0 − (x3

0 + a0x0 + b0)
p
)

2(x3
0 + a0x0 + b0)(p+1)/2

must be exact. So we compute its remainder, which is a polynomial that has

coefficients that depend on a1, b1, c0 and c1. Forcing that remainder to be zero

gives us a linear system on those indeterminates. Solving that system gives

us the canonical lift (i.e., a1 and b1) and x1 (i.e., c0 and c1). And y1 is just y0

times the quotient of that exact division above.

We observe that the converse of the proposition 4.2 in [9] guarantees

that the elliptic curve and map found are the right ones. Also, note that the

solution of the system above does not have to be unique, since the canonical

lift is only unique up to isomorphism.

The way to compute the third coordinate is analogous: we integrate
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formally the formula in proposition 2.12, and add the terms of degree (in

x0) greater than 3p2 from x2
1 as explained in the end of the previous section,

and consider the coefficients in xnp
0 , say dn, for n from 0 to [(3p2 − 1)/2p], as

indeterminates.

Then, we just look at the third coordinate of the expression of the

elliptic curve, use the fact that y2 is also y0 times a polynomial in x0, and

force the corresponding remainder of the analogous division of polynomials to

be zero. We get another system, that we solve to get the desired values for the

indeterminates, i.e., a2, b2 and the di’s. Theorem 2.13 then guarantees that

this gives the canonical lift and the elliptic Teichmüller. We used this method

to compute the canonical lift (the first three coordinates) of

y2
0 = x3

0 + x0

in characteristic p = 5 shown in section 2.5. In fact, we were able to compute,

using that algorithm, the canonical lift for a generic ordinary elliptic curve in

characteristic 5: if

y2
0 = x3

0 + a0x0 + b0

is such curve (a0 6= 0, since the curve is ordinary), then its canonical lift has

a1 = a2
0b

2
0 +

b40
a0
,

a2 = 2a25
0 + a22

0 b
2
0 + a19

0 b
4
0 + 3a16

0 b
6
0 + 2a13

0 b
8
0 + a7

0b
12
0 + 4a0b

16
0

+
3b180
a2

0

+
4b200
a5

0

+
4b220
a8

0

+
4b240
a11

0

,

b1 = 4a6
0b0 + a3

0b
3
0 + b50,

b2 = a36
0 b0 + 4a33

0 b
3
0 + 3a27

0 b
7
0 + 4a21

0 b
11
0 + 4a15

0 b
15
0 + a12

0 b
17
0 + 3a6

0b
21
0 + b250 .
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(The polynomials for the the elliptic Teichmüller map are too long to be put

in here.) We also were able to compute the generic cases for p = 7, 11, 13. A

not too long particular case for p = 7 would be:

y2
0 = x3

0 + 1,

for which we have

a1 = 0, a2 = 0,

b1 = 4, b2 = 0,

and

x1 = 5x0 + 2x4
0 + 4x10

0 ,

x2 = 4x0 + 3x4
0 + 5x7

0 + 4x10
0 + 6x13

0 + 6x19
0 + 2x22

0 + 3x25
0 + x28

0 +

2x31
0 + 5x34

0 + 6x37
0 + 2x43

0 + 2x46
0 + 2x52

0 + 6x55
0 + 4x58

0 + 2x61
0 +

2x64
0 + 3x67

0 + 3x70
0 + 6x73

0 + 5x91
0 ,

y1 = y0(2x
3
0 + 3x6

0 + 4x9
0 + 6x12

0 ),

y2 = y0(2 + 6x3
0 + 3x6

0 + 6x9
0 + x12

0 + x15
0 + 2x18

0 + 5x21
0 + x24

0 + 3x30
0 +

x39
0 + 6x42

0 + x51
0 + x54

0 + 5x57
0 + 6x60

0 + 4x66
0 + 3x72

0 + 6x75
0 +

6x81
0 + 4x84

0 + 5x87
0 + 6x93

0 + 2x96
0 + 3x105

0 + 2x108
0 + 2x111

0 + 3x114
0 ).

We first had implemented the algorithm using the software Mathemat-

ica and then, for convenience and speed, we switched to Magma, and the files

are available at

http://www.ma.utexas.edu/users/finotti/can_lifts.html
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where we also put the generic formulas for characteristic 5, 7, 11 and 13 and

some more examples.

We also observe that the algorithm described also seems to “work” if

you don’t introduce the terms of x2 from x2
1, i.e., you use for x2 just the formal

integral of the derivative in proposition 2.12, and the terms of the form dix
ip
0

for i < (3p2 − 1)/2p. The algorithm will give you back a1, a2, x1, x2, y1 and

y2, where ν = ((x0, x1, x2), (y0, y1, y2)) is a section of the reduction. But since

ν∗(x/y) is not regular at O, the curve obtained is in principle not necessarily

the canonical lift, and the map is certainly not the elliptic Teichmüller. (This

was how we obtained the “wrong lifting” ν in section 2.5.) But it seems that

this lift may be used for some applications in coding theory, and it would be

nicer than the canonical lift itself, since it has smaller degrees. In the next

chapter we will verify the existence of those lifts and estimate the degrees

obtained.



Chapter 3

Minimal Degree Liftings of Elliptic Curves

3.1 Minimal Degrees

In section 2.5, we exhibited a map ν between the affine part of an elliptic

curve (over a field k of characteristic 5) and its canonical lift with degree of

x2 smaller than the degree of the corresponding x2 of the elliptic Teichmüller.

We now study the existence of such maps with smaller degrees in more detail.

We will show that the affine part of the canonical lifting always has a unique

section of the reduction modulo pn+1, for p 6= 2, with deg xi ≤ (3pi + 1) and

deg yi ≤ (i+ 3)pi − ipi−1, for i = 1, . . . , n.

In this section we will be a little more generic and consider hyperelliptic

curves for p 6= 2. For simplicity, we shall write

C/k : y2
0 = f(x0),

where f is a monic polynomial of degree d ≥ 3 with simple roots, and

C/W (k) : y2 = f(x),

where f is a monic polynomial that reduces to f modulo p. Looking at the

(n+ 1)-th coordinate of the equation of C we have:

2ypn

0 yn + · · · = f ′(x0)
pn

xn + . . . (3.1)

33
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(where f ′(x0) represents the formal derivative of f(x0)) where neither xn nor

yn appear in any of the omitted terms.

We shall use “degx0
” to denote the degree as polynomial in x0, to not

be confused with “deg” that denotes degrees as functions on the curve. To

make our exposition clearer, we introduce the following useful lemma:

Lemma 3.1. Let a, b, c ∈ k[x0], with degx0
(a) = n, degx0

(b) = m, degx0
(c) =

r. Also, let s
def
= max{r, n + m − 1} and assume (a, b) = 1. Then, there

exists a unique pair of polynomials u, v ∈ k[x0] with degx0
(u) ≤ m − 1 and

degx0
(v) ≤ s−m such that au+ bv = c.

Proof. We follow the basic idea of lemma IV.1 in [8]. Let L(i) denote the vector

space of polynomials in k[x0] with degrees less than or equal to i. Consider

the linear map

ψ : L(m− 1) ⊕ L(s−m) → L(s),

given by ψ(u, v)
def
= au+ bv. Since (a, b) = 1, ψ(u, v) = 0 if, and only if, u = bz

and v = −az, for some polynomial z ∈ k[x0]. But degx0
(u) ≤ m−1 < degx0

(b),

what implies u = z = 0. Thus kerψ = {0}. Now, since dimL(i) = i + 1,

comparing dimensions, we have that ψ is an isomorphism, and since c ∈ L(s),

there exist a unique pair u, v as in the statement.

We need to introduce some new notation here: for r ≥ 0, let

Ur(e)
def
=
{

s = (s0, s1, . . . ) ∈ W (K)× | v(sn) ≥ pn(v(s0) − ne), for 0 ≤ n ≤ r
}

.

Note that the proof of lemma 2.5 (that tells us that U(e) is a group) can be

used to prove that Ur(e) is also a group.
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Proposition 3.2. Given any curve

C/W (k) : y2 = f(x)

where f(x) is a monic polynomial of degree d with reduction f(x0) modulo p

such that (f(x0), f
′(x0)) = 1, then there exists a unique lift of the affine part

of the curve

C/k : y2
0 = f(x0),

to the affine part of C, say

ν = ((x0, x̃1, x̃2, . . . ), (y0, ỹ1, ỹ2, . . . )),

where x̃n is a polynomial in x0 and ỹn is y0 times a polynomial in x0, with

deg x̃n ≤ d(pn+1)−2 and deg ỹn ≤ [n(d−2)+d]pn +[n(d−2)]pn−1. Moreover,

the degrees of the x̃n are minimal.

Proof. We will consider groups of the form Ur((d − 2)(p + 1)/p) (with an

appropriate r), where the valuation is defined by v
def
= − deg. (Note that will

be dealing only with polynomials in x0 and y0.)

We prove the theorem by induction on n. The case n = 0 is trivial.

Now suppose we have ν up to the n-th coordinate. We construct x̃n and ỹn

in the following way: observe that (x0, x̃1, . . . , x̃n−1) and (y0, ỹ1, . . . , ỹn−1) are

both in the group Un−1((d − 2)(p + 1)/p), by the induction hypothesis. We

now “find” x̃n and ỹn. Write down the (n + 1)-th coordinate of the equation

of C/Wn+1(k), regarding x̃n and ỹn as unknowns to be found. Since we want

ỹn to be of the form y0 F̃n(x0), with F̃n(x0) ∈ k[x0], we need in fact to find F̃n.
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We then have

−f ′(x0)
pn

x̃n + 2f(x0)
(pn+1)/2F̃n = . . . , (3.2)

where no omitted term has x̃n nor ỹn.

Looking carefully at the proof of 2.5, we notice that we actually bound

each summand that appears in the (n+ 1)-th coordinate of product s · t, with

s, t ∈ U(e), by pn(v(s0) + v(t0) − ne). So, in particular, if s, t ∈ Un−1(e), all

the terms in the (n+1)-th coordinate of s ·t that do not have sn and tn have to

satisfy this bound, since they depend only on (s0, . . . , sn−1) and (t0, . . . , tn−1)

(even though we would not have control over the terms with sn and tn).

Hence all the terms in (3.2) that do not involve x̃n or F̃n have degrees

less than or equal to [n(d−2)+2d]pn+[n(d−2)]pn−1 (since the highest degrees

should come from xd and y2, by lemma 2.6).

Now let c denote the omitted terms of (3.2). (Note that c is a poly-

nomial in x0.) Let a
def
= −f ′(x0)

pn

and b
def
= 2f(x0)

(pn+1)/2, and by lemma

3.1, there are u and v polynomials in x0 such that au + bv = c, and deg u ≤

d(pn + 1) − 2 and deg v ≤ [n(d − 2) + d]pn + [n(d − 2)]pn−1 − d. So, we take

x̃n
def
= u, and ỹn

def
= y0 v.

The minimality comes from the uniqueness in the lemma. We cannot

have a ˜̃xn with degree less than the degree of x̃n, unless we allow deg ˜̃yn >

[n(d− 2) + d]pn + [n(d− 2)]pn−1. But in this case the degree of the left hand

side of the equation

−f ′(x0)
pn ˜̃xn + 2ypn

0
˜̃yn = . . . ,
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would have degree larger than the upper bound for the degree of the right

hand side. Therefore, there can be no such pair ˜̃xn, ˜̃yn.

We call the above ν the minimal lift of C to C (with respect to x).

Therefore, although we may neglect to mention it, whenever we talk about

minimal lifts, we will be considering the affine parts of the curves only.

One can also use the same approach to minimize the degrees of the yn

instead. In such case we get:

Proposition 3.3. With the same hypothesis and notation as proposition 3.2,

and assuming p does not divide d−1, there exists a unique lift ν with deg ỹn ≤

2(d− 1)pn +(d− 2) and deg x̃n ≤ [n(d− 2)+2]pn +n(d− 2)pn−1. In this case,

deg ỹn is minimal.

Proof. The proof follows the exact same idea as the proof of proposition 3.2:

again we will work in U((d− 2)(p + 1)/p) and we just apply lemma 3.1 with

a
def
= 2f(x0)

(pn+1)/2, b
def
= −f ′(x0)

pn

, and c as before.

The above propositions have obvious applications to elliptic curves, by

taking d = 3. But by theorem 2.1, we can see that taking E ordinary and E

its canonical lift, we can have deg x1 ≤ 3p− 1, deg y1 ≤ 4p− 1. This gives the

motivation for the following proposition, with better bounds to ỹn:

Proposition 3.4. Assume again the same hypothesis and notation from propo-

sition 3.2 and suppose further that we have a lift modulo p2, say

ν = ((x0, x̃1), (y0, ỹ1)),
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such that deg x̃1 ≤ dp − (d − 2) and deg ỹ1 ≤ (2d − 2)p − (d − 2). Then, we

can complete ν to

ν(x0, y0) = ((x0, x̃1, x̃2, . . . ), (y0, ỹ1, ỹ2, . . . )),

with deg x̃n ≤ d(pn + 1)− 2 and deg ỹn ≤ [n(d− 2) + d]pn − n(d− 2)pn−1 in a

unique way.

Proof. The idea is that the restrictions on x̃1 and ỹ1 allows us to work on

U((d − 2)(p − 1)/p) instead of U((d − 2)(p + 1)/p). Inductively, the term

c (as in the proof of proposition 3.2) will have degree less than or equal to

[n(d− 2) + 2d]pn − n(d− 2)pn−1, and we just apply lemma 3.1 again.

3.2 Minimal Degrees Modulo p3

In this section we will consider elliptic curves only and p 6= 2, 3.

Proposition 3.2 gives us upper bounds for the minimal degrees. We

notice that our choices for E (here denoting any curve with reduction E) give

different x̃2’s, and one can ask which choice would give us the minimal possible

degree for x̃2, which we shall call the absolute minimal degree lift of E,

and exactly what degree would x̃2 have. (Note that the absolute minimal lift

is not necessarily unique.) In this section we try to answer these questions for

the reduction modulo p3, at least for an ordinary E.

First of all, we observe that modulo p2, those answers are given by

proposition 4.2 of [9]: the choice of curve that gives the minimal possible

degree for x̃1 is the canonical lift itself, the minimal degree map is the elliptic

Teichmüller and the degree of x̃1 (or x1 in this case) is exactly 3p− 1.
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We remember here that we mentioned in section 2.6 that we could

change the algorithm presented to compute the canonical lift to give a x̃2 with

degree 3p2 − 1, with the same derivative as x2, at least in all cases we tried.

By proposition 3.2, this map has minimal degree, meaning that no other lift

to the canonical lift E could have smaller degrees.

We start our analysis with a conjecture:

Conjecture 3.5. The division of polynomials

3

4
x2

1 = [xp
0 f(x0)

(p+1)/2]q(x0) + r(x0)

(where x1 comes from the elliptic Teichmüller and E is given by y2
0 = f(x0))

is such that degx0
r(x0) ≤ (5p− 1)/2.

First, observe that the division algorithm tells us that degx0
r(x0) ≤

(5p+ 1)/2, i.e., the bound is one more than the one stated in the conjecture.

To verify the statement of conjecture 3.5 we wrote a routine in Magma that

checked that it is true for any ordinary E in characteristic p from 5 to 877.

We checked by formally integrating dx1/dx0 and adding c1x
p
0 + c0, leaving c1

and c0 as independent variables, so that we did not have to compute them

precisely. Unfortunately, we don’t have yet a proof.

We now show the implications of such conjecture in answering the ques-

tion modulo p3:

Theorem 3.6. Assume conjecture 3.5 is true. Then, the absolute minimal

degree lift

ν = ((x0, x1, x̃2), (y0, y1, ỹ2))
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is such that deg x̃2 = 3p2−1 and E is the canonical lift (modulo p3). Moreover,

we have that

dx̃2

dx0

=
dx2

dx0

.

Proof. First we observe, as we mentioned above, that E modulo p2 has to be

the canonical lift, and x1 and y1 come from the elliptic Teichmüller.

We now prove that we always have such a lift to the canonical lift. We

will actually give a way to construct the absolute minimal degree lift: if

τ = ((x0, x1, x2), (y0, y1, y2))

is the elliptic Teichmüller lift, we compute, using the division algorithm,

x2 = f(x0)
(p2+1)/2 q1(x0) + r1(x0) (degx0

r1 ≤ (3p2 + 1)/2).

Now define x̃2
def
= r1(x0) and ỹ2

def
= y2 − y0[f

′(x0)
p2

q1(x0)]/2. Then, we have

2yp2

0 ỹ2 − f ′(x0)
p2

x̃2 = 2yp2

0 y2 − f ′(x0)
p2

x2,

and thus, by equation (3.1),

ν
def
= ((x0, x1, x̃2), (y0, y1, ỹ2))

is another lift from E to its canonical lift, and since deg x̃2 ≤ (3p2 + 1), by

proposition 3.2, it is the minimal lift. We now have to prove that deg x̃2 =

3p2−1: let d(x0)
def
= xp2

0 x2−3/4x2p
1 . So, theorem 2.13 tells us that degx0

d(x0) =

(5p2 − 1)/2. We can then write

xp2

0 x2 = xp2

0 f(x0)
(p2+p)/2q(x0)

p + [r(x0)
p + d(x0)]

= xp2

0 f(x0)
(p2+1)/2

[

f(x0)
(p−1)/2q(x0)

p
]

+ [r(x0)
p + d(x0)],

(3.3)
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with degx0
[r(x0)

p + d(x0)] = (5p2 − 1)/2 (since we are assuming the con-

jecture to be true), and thus it is the remainder of the division of xp2

0 x2 by

xp2

0 f(x0)
(p2+1)/2. We see then that xp2

0 divides this remainder and x̃2 = r1(x0) =

[r(x0)
p + d(x0)]/x

p2

0 , which implies that degx0
x̃2 = (3p2 − 1)/2.

After we prove that this is indeed the absolute minimal lift of E, the

last part of the statement of the theorem is just a consequence of equation

(3.3): we have

x2 = f(x0)
(p2+p)/2q(x0)

p +
r(x0)

p + d(x0)

xp2

0

= f(x0)
(p2+p)/2q(x0)

p + x̃2,

and taking derivatives gives us the result.

Now, we prove that this indeed gives us the absolute minimal degree

lift: assume we have some lift of E to some curve E (not necessarily the

canonical lift) with deg x̃2 ≤ 3p2 − 1. Let

˜̃x2
def
= x̃2 + [q(x0)f(x0)

(p+1)/2]p

(with the q(x0) from the conjecture) and

˜̃y2
def
= ỹ2 +

y0

2
[f ′(x0)

p2

f(x0)
(p−1)/2q(x0)

p].

Then,

ν̃ : (x0, y0) 7→ ((x0, x1, ˜̃x2), (y0, y1, ˜̃y2)),

is another lift, since

2yp2

0
˜̃y2 − f ′(x0)

p2 ˜̃x2 = 2yp2

0 ỹ2 − f ′(x0)
p2

x̃2.

But then, by hypothesis,

xp2

0
˜̃x2 −

3

4
x2p

1 = xp2

0 x̃2 +
[

xp
0 q(x0) f(x0)

(p+1)/2
]p

−
3

4
x2p

1 = xp2

0 x̃2 − r(x0)
p
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has degree, as a polynomial in x0, less than or equal to (5p2 − 1)/2. Theorem

2.13 then tells us that E is the canonical lift modulo p3, ˜̃x2 and ˜̃y2 are x2 and

y2 from the elliptic Teichmüller, and degx0
[xp2

0 x̃2 − r(x0)] = (5p2 − 1)/2, what

implies deg x̃2 = 3p2 − 1.

Thus, if the conjecture is true, the minimal lift among all choices of

curves E occurs for E equal to the canonical lift, and with this minimal

degree of x̃2 exactly 3p2 − 1.

Theorem 3.6 justifies why our modified algorithm (when we did not

introduce the terms from x2p
1 in the computation of x2) described in the end of

the section 2.6 seems to work. That modified algorithm computes the absolute

minimal degree lift and the canonical lift. Also, note that we can verify the

existence of such lift with deg x̃2 = 3p2 − 1 before we really have to compute

x2, since its existence depends only on the conjecture, that deals only with x1

(which can be computed fairly fast). Using the modified algorithm, we can

then compute x̃2 and ỹ2 without computing x2 and y2. Our function written

for Magma gives you an option to compute this absolute minimal degrees lift

instead of the Teichmüller is this exact way. Note that the curve obtained by

this algorithm is then necessarily the canonical lift.
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3.3 Minimal Lifts and the Frobenius

Having a lift from E to E/W2(k) is equivalent to having a lift of the Frobenius

(see [1]) in the affine part of E. In fact, if the lift is given by

(x0, y0) 7→ ((x0, x1), (y0, y1)),

one can define φ(x,y)
def
= (xp + px1,y

p + py1), where x1 is any polynomial

in W2(k)[x] with reduction x1 and y1 is any polynomial in W2(k)[x,y] with

reduction y1.

On the other hand, having a lift from E to E/W3(k) just guarantees a

lift of φ2:

φ2(x,y)
def
= (xp2

+ pxp
1 + p2(x2 −xp(p−1)x1), (y

p2

+ pyp
1 + p2(y2 − yp(p−1)y1))).

Of course, the canonical lift always has a lift of φ associated to τ . So, one

could ask if the Frobenius also lifts (at least for the the affine parts) for these

minimal lifts, making the diagram

E(W3(k̄))
φ

−−−→ Eσ(W3(k̄))

ν

x





x





ν

E(k̄)
φ

−−−→ Eσ(k̄)

(3.4)

commute. (Here σ represents the Frobenius in k and W (k).) Note that in

the case where E is the canonical lift of E (and therefore Eσ is the canonical

lift of Eσ), we cannot use the lift of the Frobenius associated to the elliptic

Teichmüller, since the diagram would not commute.

Lemma 3.7. Let P (X, Y ) be a polynomial over a field of characteristic zero.
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Then

P (X0 + pX1, Y0 + pY1)

≡ P (X0, Y0) + p

(

∂P

∂X
(X0, Y0)X1 +

∂P

∂Y
(X0, Y0)Y1

)

(mod p2).

Proof. This is an easy application of Taylor’s formula for P .

Proposition 3.8. Assume conjecture 3.5 is true. Let ν be the minimal lift

from affine part of E (ordinary) to the affine part of E/W3(k), such that,

modulo p2, ν gives us the Teichmüller. We have a lift of the Frobenius (for the

affine parts) that make the diagram (3.4) commute if, and only if, deg x̃2 =

3p2 − 1 (and then ν is the absolute minimal degree lift and E is the canonical

lift).

Proof. Note that the minimality of ν implies that E is the canonical lift modulo

p2. Now assume that we have a lift of φ associated to ν:

φ(x,y) = (xp + px1 + p2P ,yp + py1 + p2Q).

Let δ be the p-derivation associated to φ (as in equation (2.12)). We have

δx = x1 + pP

and, using lemma 3.7,

δ2x =
(x1 + pP )σ ◦ φ− (x1 + pP )p

p

=
xσ

1 (xp) − x
p
1

p
+
dx1

dx

σ

(xp) · x1 + P σ(xp) + p · (. . . ).

(3.5)

But, by [1], we have that the reduction modulo p of δ2x must be equal to

x̃2 −x
p(p−1)
0 x1. Taking derivatives, the reduction modulo p of P σ(xp) vanishes
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(it is a p-power). So all that is left after taking derivative does not depend on

P , it depends only on x1, and then, should give the same result as if we had

used the lift of the Frobenius given by the elliptic Teichmüller (that maybe

takes E to an E′ 6= E, but necessarily E ′ ≡ E (mod p2)). Therefore

dx̃2

dx0
− x

p(p−1)
0

dx1

dx0
=
dx2

dx0
− x

p(p−1)
0

dx1

dx0
.

Since deg x̃2 ≤ 3p2 + 1 and it has the same derivative as x2, we have deg x̃2 =

3p2 − 1.

Conversely, assume ν is such that deg x̃2 = 3p2−1. By theorem 3.6, the

curve E is the canonical lift of E and dx2/dx0 = dx̃2/dx0. Hence, ∆x
def
= x2−x̃2

is a p-power. This implies that ∆y
def
= y2− ỹ2 can also be written as a p-power,

since

2yp2

0 ∆y = f ′(x0)
p2

∆x.

Let

φ1(x,y) = (xp + px1 + p2P 1,y
p + py1 + p2Q1)

be the Frobenius associated to τ . Define now P 2 as P 1 minus a lift of (∆x)1/p,

that we shall call ∆P , and Q2 as Q1 minus a lift of (∆y)1/p, that we shall call

∆Q. We claim that in this case, the φ2 as defined as

φ2(x,y) = (xp + px1 + p2P 2,y
p + py1 + p2Q2),

is a lift of the Frobenius associated to ν. First, we check that it is well defined:

let X
def
= xp + px1 + p2P 1 and Y

def
= yp + py1 + p2Q1. Then

Y2 ≡ fσ(X) (mod p3)
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and we need to prove

(Y − p2∆Q)2 ≡ fσ(X − p2∆P ) (mod p3).

But, applying lemma 3.7, that is equivalent to

2Y∆Q ≡ (f ′)σ(X) · ∆P (mod p),

or

2 yp
0 (∆y)1/p = f ′(x0)

p (∆x)1/p,

that we can see is true, by raising both sides of the equation to the p-th power.

Clearly φ2 is a lift of the Frobenius, and the fact that it makes the

diagram (3.4) commute is equivalent to the fact that δ2x = x̃2 −x
p(p−1)
0 x1 and

δ2y = ỹ2 − y
p(p−1)
0 y1, where δ2 is the p-derivation associated to φ2. This can

be easily checked by noticing that the reduction of

δ2
i x =

(x1 + pP i)
σ ◦ φi − (x1 + pP i)

p

p

=
xσ

1 (xp) − x
p
1

p
+
dx1

dx

σ

(xp) · x1 + P σ
i (xp) + p · (. . . ).

(3.6)

for i = 2 differs from the reduction for i = 1 by ∆x (that is, the p-power of

the reduction of ∆P ), and the analogue will hold for δ2y.

The above proposition then says that conjecture 3.5 implies that the

minimal degree lift from the affine part of E to the affine part of its canonical

lift has a lift of the Frobenius associated to it.

Also, the proof the proposition also gives us:

Proposition 3.9. Let C be the hyperelliptic curve

C/k : y2
0 = f(x0),
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where f is a monic polynomial of degree d ≥ 3 with simple roots, and suppose

that we have a lift of C

C/W3(k) : y2 = f(x).

for which the Frobenius lift in the affine part of C. Let

ν
def
= ((x0, x1, x2), (y0, y1, y2))

be the lift of points, and also assume that xi is a polynomial in x0. Then,

dx2

dx0

=

(

dx1

dx0

)p+1

+

(

dx1

dx0

)p

xp−1
0 +

(

x
p(p−1)
0 − xp−1

1

) dx1

dx0

.

In particular, if dx1/dx0 = λ yp−1
0 − xp−1

0 for some λ ∈ k∗, then

dx2

dx0

= λp+1 yp2−1
0 − xp2−1

0 − xp−1
1

dx1

dx0

.

Proof. Let x1 and y1 be lifts of x1 and y1 to W3(k)[x] and W3(k)[x,y] respec-

tively. Then the lift of the Frobenius has the form

φ(x,y) = (xp + px1 + p2P ,yp + py1 + p2Q),

for some polynomials P and Q. As in the proof of proposition 3.8, formula

(3.5) also holds in this case. The reduction of this formula modulo p is equal

to x2 − x
p(p−1)
0 , and taking derivatives of both sides of this equation gives the

result.

3.4 Characteristic 2

We now compute the canonical lifting and the elliptic Teichmüller modulo

higher powers of 2 of an elliptic curve in characteristic 2, where our previous

analysis does not apply. So, throughout this section we are going to fix p = 2.
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An ordinary elliptic curve in characteristic 2 over an algebraic closed

field (or over some finite extension of our original ground field k) can always

be put in the form

y2
0 + x0 y0 = x3

0 + a0,

and so, we consider the canonical lift having the same form:

y2 + x y = x3 + a.

Voloch and Walker in [9] computed the reduction modulo 4, obtaining

a1 = a2
0, x1 = a0, y1 = (x2

0 + x0) y0 + x3
0 + a0 x

2
0 + a0.

(Notice that for p = 2, yn is not necessarily y0 times a polynomial in x0.)

To compute the reduction modulo higher powers of 2, we first computed

the derivative of xn.

Theorem 3.10. For p = 2 and n ≥ 1, we have

dxn

dx0
= 0.

We are going to break the proof in small lemmas. But first, we introduce

the notation

F
def
=

1

p
φ∗,

where φ is the lift of the Frobenius. Also, we denote by δ the 2-derivation

associated to φ.

Lemma 3.11. We have that

Fn(dx) = d(δnx) + x2n−1dx + . . . ,
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where every omitted term that contains dx is a multiple of 2 and no other term

contains d(δnx).

Proof. We prove it by induction on n. For n = 1, we have:

F(dx) =
d(x ◦ φ)

2
=
d(x2 + 2δx)

2
= x dx + d(δx).

Suppose now the lemma true for n. We prove if for n+ 1:

Fn+1(dx) = F(Fn(dx)) = F(d(δnx) + x2n−1dx + . . . )

= (δnx) d(δnx) + d(δn+1x)

+ (x2 + 2δx)2n−1 (x dx + d(δx)) + . . .

= d(δn+1x) + x2n+1−2(x dx + d(δx)) + . . .

= d(δn+1x) + x2n+1−1dx + . . . ,

and the omitted terms do not have a term with dx that is not a multiple of

2 or a term with d(δn+1x), for F does not introduce denominators, and thus

takes multiples of 2 to multiples of 2, and F(d(δix)) gives just terms with

d(δix) and d(δi+1x).

Lemma 3.12. The reduction modulo 2 of d(δnx) can be written as

dxn +
n−1
∑

i=1

∂Pn

∂xi
dxi.

where Pn ∈ F2[x0, . . . , xn−1].

Proof. We recall that the reduction modulo 2 of δnx is xn + Pn(x0, . . . , xn−1),

for some polynomial Pn, that the proof of lemma 2.6 in [1] shows us how to

compute. Therefore, the reduction modulo 2 of d(δnx) can be written as

dxn +
∂Pn

∂x0
dx0 +

n−1
∑

i=1

∂Pn

∂xi
dxi.
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So, it suffices to prove that ∂Pn/∂x0 = 0 for all n ≥ 1, that is the same as

saying that Pn just have even powers of x0, what we prove by induction on n.

For n = 1 it is trivial, since P1 = 0. Then, assume it is true for all i ≤ n. We

recall how to compute Pn: let

a
def
=
∑

k≥0

xk 2k,

considering a in characteristic zero and xk’s as independent variables. Let

δ0a
def
= a and φ(xi)

def
= x2

i and extend φ linearly to power series and polynomials.

Define

δi+1(a)
def
=

1

2

(

φ(δia) − (δia)2
)

.

If we write

δna =
∑

k≥0

Θk 2k,

where Θk ∈ Z[x0, x1, . . . ] with coefficients 0 or 1, then

Pn(x0, x
2
1, . . . , x

2n−1

n−1 ) = Θ0(x0, x1, . . . , xn) − x2n

n . (3.7)

(Here we are identifying Pn with the corresponding polynomial with integers

coefficients.) Now,

δn+1a =
1

2
[(φ(Θ0) + 2φ(Θ1) + . . .)

−
(

Θ2
0 + 4Θ0(Θ1 + 2Θ2 + . . . ) + 4(Θ1 + 2Θ2 + . . . )2

)]

=
φ(Θ0) − Θ2

0

2
+ φ(Θ1) + 2(. . . ).

By induction hypothesis and equation 3.7, we have that Θ0 just has

even powers of x0, and therefore, so does [φ(Θ0) − Θ2
0]/2. Clearly φ(Θ1) just

has even powers of x0, which finishes the proof, since

Pn+1(x0, x
2
1, . . . , x

2n

n ) ≡
φ(Θ0) − Θ2

0

2
+ φ(Θ1) − x2n+1

n+1 (mod 2).
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Lemma 3.13. Let

ωn
def
= reduction modulo 2 of Fn

(

dx

2y + x

)

.

Then, ωn = dx0/x0.

Proof. Let C be the Cartier operator. Then, since F is the “inverse” of C

(see [3]), we have that Cn(ωn) = dx0/x0. On the other hand, since ωn is

holomorphic, ωn = α dx0/x0, and so Cn(ωn) = α1/2n

dx0/x0. Thus α = 1, and

ωn = dx0/x0.

With these lemmas, we prove the theorem:

Proof of Theorem 3.10. The theorem is equivalent to say that dxn = 0 for

n ≥ 1. We prove it by induction on n. With the same notation as in the the

previous lemma, for n = 1 we have:

ω1 =
x0 dx0 + dx1

x2
0

=
dx0

x0

where the last equality comes from lemma 3.13. This equation gives us dx1 = 0.

Now, assume dxi = 0 for i = 1, . . . , n− 1. We prove that dxn = 0: we

have that ωn is given by

ωn =
dxn + x2n−1

0 dx0 + . . .

x2n

0

,

where all omitted term can be written only with dx1, . . . , dxn−1, by lemmas

3.11 and 3.12. By induction hypothesis and lemma 3.13, we have

x2n−1
0 dx0 + dxn

x2n

0

=
dx0

x0

,

which proves that dxn = 0.
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We can now compute the canonical lift modulo 23: the algorithm de-

scribed in section 2.6 does not work, but we can still compute it. We know

that dx2/dx0 = 0, and so x2 just has even powers of x0, and from chapter 2,

we know that deg x2 = 12, with leading coefficient 1, and that deg y2 < 16.

The third coordinate of the equation is not too complicated, and we simply

write

x2 = x6
0 +

2
∑

i=0

A2i x
2i
0

and

y2 =
7
∑

i=0

Bi x
i
0 + y0

6
∑

i=0

Ci x
i
0,

leaving the A2i’s, Bi’s, Ci’s and a2 as unknowns in the third coordinate of the

equation of the curve, and force the equality by solving the linear system given

by this equation.

Solving that we find an unique solution:

a2 = a4
0

x2 = a0 x
2
0 + x6

0

y2 = (a2
0 + a4

0) + (a0 + a3
0) x

2
0 + a4

0 x
4
0 + (1 + a2

0) x
5
0 + (1 + a0 + a2

0) x
6
0

+ [(1 + a2
0) x

3
0 + a0 x

4
0 + x6

0] y0.

The uniqueness implies that this has to give us the canonical lift and the

Teichmüller map, as one can also check by analyzing x/y.

To check solutions with smaller degrees, we can try to write

x2 =
6
∑

i=0

Ai x
i
0 + y0

4
∑

i=0

A′
i x

i
0,
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and y2 as before and try to solve it in the same way, but we will still find exactly

one single solution to the corresponding system, again having the canonical

lift and the Teichmüller map as the result.

But, in this case, we do have a lift

ν = ((x0, x1, x̃2), (y0, y1, ỹ2))

with deg x̃2 < deg x2, but in this case, in contrast to what happens to charac-

teristic different from 2, we have deg ỹ2 > deg y2. Such a lift is:

a2 = a4
0

x̃2 = a0 x
2
0

ỹ2 = (a2
0 + a4

0) + (a0 + a2
0 + a3

0) x
2
0 + (a0 + a4

0) x
4
0

+ (1 + a2
0) x

5
0 + (1 + a0 + a2

0) x
6
0 + x7

0 + x8
0 + x10

0

+ [(1 + a2
0) x

3
0 + a0 x

4
0 + x5

0 + x6
0] y0

If we compute another coordinate, we have deg x3 < 28 and deg y3 < 36,

by our analysis of leading coefficients. Proceeding as described above, we can

try to find the canonical lift and possibly some lift with smaller degrees, we

can set

x3 =

13
∑

i=0

Ai x
i
0 + y0

11
∑

i=0

Bi x
i
0

and

y3 =

17
∑

i=0

Ci x
i
0 + y0

16
∑

i=0

Di x
i
0,

and solve the corresponding system. We get, as solutions a3 = a8
0,

x3 = a8
0 + a0 x

6
0 + A8 x

8
0 + A9 x

9
0 + x10

0 + x12
0 + y0 (D16 x

8
0),
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and

y3 = a4
0 + a5

0 + a4
0A8 + a4

0A9 x0 + a5
0 x

2
0 + (a2

0 + a6
0 + a8

0 + a10
0 + a2

0A8) x
4
0

+ (a4
0 + a2

0A9) x
5
0 + (a0 + a5

0 + a7
0 + a9

0 + a0A8) x
6
0

+ (a2
0 + a3

0 + a4
0 + a0 A9 + a0 D16) x

7
0 + (a0 + a2

0 + a3
0 + a4

0 + a6
0) x

8
0

+ (1 + a6
0 + a8

0 + A8) x
9
0 + (1 + a6

0 + a8
0 + A8 + A9 +D16) x

10
0

+ (1 + a2
0 + a3

0 + A9) x
11
0 + (1 + a0 + a3

0 + a8
0 + A8) x

12
0

+ (1 + a2
0 + a4

0 + A9) x
13
0 + (1 + a0 + a2

0 + a4
0) x

14
0

+ (1 + a0 + a2
0 + a4

0 + A8) x
16
0 + A9 x

17
0 + y0 [a4

0D16 + a4
0 x

3
0

+ (a5
0 + a2

0D16) x
4
0 + a2

0 x
5
0 + (a2

0 + a3
0 + a0 D16) x

6
0

+ (1 + a0 + a2
0 + a3

0 + a6
0 + a8

0 + A8) x
7
0 + (a0 + a3

0 + a5
0 + A9 +D16) x

8
0

+ (1 + a0 +D16) x
9
0 + (1 + a3

0 + a4
0 +D16) x

10
0 + (a0 + a4

0) x
11
0

+ (a0 + a2
0 +D16) x

12
0 + x13

0 + x14
0 +D16 x

16
0 ].

Thus, clearly, to get the minimal and the Teichmüller lifts, we need to choose

D16 = 0. This leaves us the choices of A8 and A9. Again, to get minimal

degrees and the Teichmüller (since dx3/dx0 = 0), we choose A9 = 0. So, we

have

x3 = a8
0 + a0 x

6
0 + A8 x

8
0 + x10

0 + x12
0 ,
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and

y3 = a4
0 + a5

0 + a4
0A8 + a5

0 x
2
0 + (a2

0 + a6
0 + a8

0 + a10
0 + a2

0 A8) x
4
0 + a4

0 x
5
0

+ (a0 + a5
0 + a7

0 + a9
0 + a0A8) x

6
0 + (a2

0 + a3
0 + a4

0) x
7
0

+ (a0 + a2
0 + a3

0 + a4
0 + a6

0) x
8
0 + (1 + a6

0 + a8
0 + A8) x

9
0

+ (1 + a6
0 + a8

0 + A8) x
10
0 + (1 + a2

0 + a3
0) x

11
0

+ (1 + a0 + a3
0 + a8

0 + A8) x
12
0 + (1 + a2

0 + a4
0) x

13
0

+ (1 + a0 + a2
0 + a4

0) x
14
0 + (1 + a0 + a2

0 + a4
0 + A8) x

16
0

+ y0 [a4
0 x

3
0 + a5

0 x
4
0 + a2

0 x
5
0 + (a2

0 + a3
0) x

6
0

+ (1 + a0 + a2
0 + a3

0 + a6
0 + a8

0 + A8) x
7
0 + (a0 + a3

0 + a5
0) x

8
0 + (1 + a0) x

9
0

+ (1 + a3
0 + a4

0) x
10
0 + (a0 + a4

0) x
11
0 + (a0 + a2

0) x
12
0 + x13

0 + x14
0 ].

The choice of A8 = 1 + a0 + a2
0 + a3

0 + a6
0 + a8

0, clearly gives us the smaller

degrees, but in fact, it does not gives us the canonical lift. One can check that

by looking at x/y. The fourth coordinate of x/y is given by,

x3

y8
0

+
x2

0 x
3
1 y1

y10
0

+
x2

0 x1 x2 y1

y10
0

+
x4

0 x2 y
2
1

y12
0

+
x2

1 x2 y
2
1

y12
0

+
x2

0 x
3
1 y

3
1

y14
0

+
x8

0 y
4
1

y16
0

+
x4

0 x
2
1 y

4
1

y16
0

+
x4

1 y
4
1

y16
0

+
x4

0 x2 y
4
1

y16
0

+
x2

2 y
4
1

y16
0

+
x6

0 x1 y
5
1

y18
0

+
x8

0 y
6
1

y20
0

+
x4

0 x
2
1 y

6
1

y20
0

+
x4

1 y
8
1

y24
0

+
x8

0 y
12
1

y32
0

+
x4

0 x2 y2

y12
0

+
x6

0 x1 y1 y2

y14
0

+
x8

0 y
2
1 y2

y16
0

+
x4

0 x
2
1 y

2
1 y2

y16
0

+
x8

0 y
4
1 y2

y20
0

+
x8

0 y
2
2

y16
0

+
x4

1 y
2
2

y16
0

+
x8

0 y3

y16
0

The part that has non-positive order at infinity and the part in x3 and y3 is

x3

y8
0

+
x4

0 x2 y
4
1

y16
0

+
x2

2 y
4
1

y16
0

+
x8

0 y
12
1

y32
0

+
x8

0 y3

y16
0

.
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Using the expressions of x1, y1, x2, y2, we get that

x4
0 x2 y

4
1

y16
0

+
x2

2 y
4
1

y16
0

+
x8

0 y
12
1

y32
0

has actually positive order at infinity, and since x3/y
8
0 has order 0 (for any

choice of A8), we have that the Teichmüller lift had deg y3 = 32, and A8 =

a0 + a2
0 + a4

0. In this case, we have a lift

ν = ((x0, x1, x2, x̃3), (y0, y1, y2, ỹ3)),

with deg x̃3 = deg x3 and deg ỹ3 < deg y3.

On the other hand if we use x̃2 and ỹ2 as before, we can get a lift

ν̃ = ((x0, x1, x̃2, ˜̃x3), (y0, y1, ỹ2, ˜̃y3))

with

˜̃x3 = a8
0 + a6

0 x
6
0

and

˜̃y3 = a4
0 + a6

0 + (a3
0 + a6

0 + a7
0) x

2
0 + (a3

0 + a4
0 + a5

0 + a8
0 + a10

0 ) x4
0

+ (a2
0 + a6

0) x
5
0 + (a0 + a2

0 + a3
0 + a4

0 + a5
0 + a6

0 + a7
0 + a9

0) x
6
0

+ (a2
0 + a3

0) x
7
0 + (a2

0 + a6
0) x

8
0 + (1 + a0 + a6

0 + a8
0) x

9
0

+ (a0 + a2
0 + a3

0 + a5
0 + a6

0 + a8
0) x

10
0 + (a0 + a2

0 + a3
0) x

11
0

+ (1 + a0 + a3
0 + a8

0) x
12
0 + (1 + a0) x

13
0 + (a2

0 + a4
0) x

16
0

+ (1 + a0) x
18
0 + x19

0 + x21
0 + x22

0 + x24
0

+ y0 [(a2
0 + a6

0) x
3
0 + a5

0 x
4
0 + (a2

0 + a4
0) x

5
0 + a2

0 x
6
0

+ (1 + a3
0 + a6

0 + a8
0) x

7
0 + (a0 + a3

0 + a5
0) x

8
0 + a0 x

9
0

+ (1 + a3
0 + a4

0) x
10
0 + (a0 + a2

0) x
11
0 + (1 + a2

0) x
12
0 + a0 x

14
0 + x16

0 + x17
0 + x19

0 ]

And so, deg ˜̃x3 = 12 and deg ˜̃y3 = 48.
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3.5 Characteristic 3

In characteristic 3, an ordinary elliptic curve over an algebraic closed field (or

over a finite extension of our original base field k) can be put in the form:

y2
0 = x3

0 + x2
0 + a0,

(and then, we have the Hasse invariant A = 1) and we consider the canonical

lifting having the same form:

y2 = x3 + x2 + a.

We notice that the formulas for the derivatives of x1 and x2 remain the

same as for characteristic p ≥ 5 we used before. An analogous analysis to the

one done to prove theorem 2.13 tells us, though, that deg x2 = 3p2 − 1, and in

fact, we can use the modified algorithm described to produce a lifting modulo

33. What we obtain is:

a1 = 0, a2 = a9
0 + a12

0 ,
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and

x1 =2 a2
0 + a0 x0 + (1 + 2 a0)x

3
0 + x4

0

y1 =x2
0 y0

x2 =2 a5
0 + 2 a9

0 +
(

a4
0 + 2 a5

0

)

x0 + a4
0 x

2
0 +

(

a3
0 + a4

0 + a5
0 + 2 a6

0

)

x3
0 + 2 a2

0 x
5
0

+
(

2 a2
0 + a3

0 + a4
0

)

x6
0 + a2

0 x
7
0 + a0 x

8
0 +

(

2 a0 + a2
0 + a3

0

)

x9
0 + 2 a2

0 x
10
0

+ (2 + a0) x
11
0 +

(

2 a0 + 2 a3
0

)

x12
0 + x13

0

y2 =y0

[

2 a4
0 + a7

0 + a6
0 x

2
0 +

(

2 a4
0 + a6

0

)

x3
0 + 2 a2

0 x
4
0 +

(

a2
0 + 2 a3

0

)

x5
0

+
(

2 a2
0 + 2 a3

0 + a4
0

)

x6
0 + a0 x

7
0 +

(

a0 + a3
0

)

x8
0 +

(

2 a0 + a3
0 + a4

0

)

x9
0

+2 x10
0 +

(

2 + a3
0

)

x11
0 +

(

1 + 2 a0 + a3
0

)

x12
0 + 2 x14

0 + 2 x15
0

]

So, for p = 3, the Teichmüller lift is also the absolute minimal degree

lift.

If we look modulo 34, though, we have that deg x3 = 108, with leading

coefficient 2. So, in this case, proposition 3.4 tells us that we have a lift with

deg x̃3 ≤ 82. We can try to look at such lift to see if similar properties happen

to this minimal lift as it happened to minimal lifts modulo p3 for p ≥ 5, e.g.

is dx̃3/dx0 = dx3/dx0? What is its degree?

To compute the Teichmüller in this case, it would be useful to know

again the derivative. We wrote a program in Magma to help us, and some

numerical evidence allows us to conjecture:
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Conjecture 3.14. For p 6= 2 and n ≥ 1, we have that the reduction modulo

p of Fn(dx/y) is given by

1

ypn

0

n
∑

i=0

x
(pn−i−1)
i dxi,

which implies that

dxn

dx0
= A−(pn−1)/(p−1) ypn−1

0 − xpn−1
0 −

n−1
∑

i=1

x
(pn−i−1)
i

dxi

dx0
.

Voloch was the first to “guess” the formula above, and we did some

calculations to confirm it in some cases. We checked it to be true for: p = 3

and n ≤ 6, p = 5, 7, 11, 13 and n ≤ 4, p = 17 and n ≤ 3.

The main difficulty of proving this conjecture is maybe dealing with

Buium’s polynomials Pi’s (as in lemma 3.12 – or check lemma 2.6 in [1]). Even

with Magma running on fast computers, the computations of such polynomials

take very long for large p’s or large i’s, and there does not seem to be a straight-

forward way to deal with them theoretically to work out a proof.

We now proceed to compute x3. Since we know its derivative (the

conjecture was verified for p = 3 and n = 3), we follow the same idea of the

algorithm described in section 2.6, leaving the coefficients of x3 that cannot

be obtained by the derivative as indeterminates. We can then compute the

canonical lift and the elliptic Teichmüller map. The expressions are too long
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to be put in here, but as an example, taking a0 = 1, we would have:

a3 =1

x3 =2 + 2 x3
0 + x4

0 + 2 x6
0 + x7

0 + x8
0 + 2 x9

0 + x10
0 + x11

0 + 2 x12
0 + 2 x16

0

+ 2 x17
0 + 2 x18

0 + 2 x20
0 + x25

0 + 2 x27
0 + 2 x28

0 + 2 x29
0 + x30

0 + x32
0

+ 2 x34
0 + x35

0 + 2 x36
0 + x37

0 + 2 x38
0 + x40

0 + x45
0 + 2 x54

0

y3 =y0 [2 + 2 x3
0 + 2 x4

0 + 2 x6
0 + x7

0 + x9
0 + 2 x10

0 + x12
0 + x13

0 + 2 x15
0

+ 2 x17
0 + 2 x18

0 + 2 x19
0 + x20

0 + x21
0 + x22

0 + 2 x23
0 + x27

0 + 2 x28
0

+ 2 x29
0 + x30

0 + 2 x31
0 + 2 x34

0 + 2 x35
0 + x36

0 + 2 x37
0 + 2 x38

0 + 2 x39
0

+ x43
0 + 2 x44

0 + 2 x48
0 + 2 x50

0 + x53
0 + x54

0 + 2 x60
0 + 2 x62

0 + x63
0

+ 2 x65
0 + 2 x66

0 ]

In the generic case, we get always the same curve, having

a3 = 2 a27
0 + 2 a33

0 + a36
0 + 2 a45

0 .

The general formula can be found in the web address cited in chapter 2. To

find the minimal degree lift to the canonical lift, we proceed in an analogous

way as in theorem 3.6, we make the division of polynomials

x3 = f(x0)
14 q(x0) + x̃3, (f(x0) = x3

0 + x2
0 + a0)

and define

ỹ3 = y3 −
y0

2
[f ′(x0)

27q(x0)].
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Again, (in the general case) we get that deg x̃3 = 80, not 82 as it could be.

For a0 = 1 again, we would have:

x̃3 =1 + 2 x3
0 + x4

0 + 2 x6
0 + x7

0 + x8
0 + 2 x9

0 + x10
0 + x11

0 + 2 x12
0 + 2 x16

0 + 2 x17
0

+ x18
0 + 2 x20

0 + x25
0 + x27

0 + 2 x28
0 + 2 x29

0 + x30
0 + x32

0 + 2 x34
0 + x35

0 + x37
0

+ 2 x38
0 + x40

0

ỹ3 =y0 [2 + 2 x3
0 + 2 x4

0 + 2 x6
0 + x7

0 + x9
0 + 2 x10

0 + x12
0 + x13

0 + 2 x15
0 + 2 x17

0

+ 2 x18
0 + 2 x19

0 + x20
0 + x21

0 + x22
0 + 2 x23

0 + 2 x27
0 + 2 x28

0 + 2 x30
0 + 2 x31

0

+ x33
0 + 2 x34

0 + 2 x37
0 + x43

0 + 2 x44
0 + 2 x48

0 + 2 x50
0 + x53

0 + x54
0 + 2 x60

0

+ 2 x62
0 + x63

0 + 2 x65
0 + 2 x66

0 ]

(Again, one can see the general formula at the web address.)

We also observe that x3 and x̃3 have the same derivative (even in the

generic case), and many of the properties observed in section 3.3 for x̃2 will

hold here for x̃3 in a very similar way: the Frobenius will also lift and x̃3 will

give us the absolute minimal lift, and thus the minimal degree occurs for the

canonical lift, and lifting to every other curve will give a map ˜̃x3 with degree

larger or equal to 82. For the first claim, just observe that x3 − x̃3 and y3 − ỹ3

are 3-powers. The second claim follows from analyzing the part of x/y that

can be singular, namely

x3

y27
0

+
2 x9

1 y
3
2

y54
0

+
2 x27

0 y3

y54
0

.

Rewriting

y3 =
1

y27
0

[

y9
1 y

3
2 + 2x27

0 x3 + . . .
]

,
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we get an expression for the terms of higher power in x0 of x3 that makes it the

one from Teichmüller, and if deg ˜̃x3 ≤ 80, we can add this terms and modify

˜̃y3 to get the Teichmüller (again, as in section 3.3), which forces the curve to

be the canonical lift and the degree to be 80.



Chapter 4

Hyperelliptic Curves

4.1 Minimal Degrees

Again, let k be a perfect field of characteristic p 6= 2, and consider the (non-

singular) hyperelliptic curve given by

C/k : y2
0 = f(x0),

with degx0
f = d ≥ 3. Let ε be the number of points at infinity of C, and let

U denote the affine part of C.

Theorem 4.1. Suppose that we have a curve

C/Wn+1(k) : y2 = f(x)

with reduction C modulo p such that there is a lift of the Frobenius to the affine

part of C. Assume that the first part of conjecture 3.14 holds at least for n

and p, and that the lift of U to the affine part of C associated to the Frobenius

is given by

ν = ((x0, x1, . . . , xn), (y0, y1, . . . , yn)),

where xi’s are polynomials in x0 and with deg xi = d(pi − 1) + 2 and deg yi ≤

[i(d−2)+d]pi−i(d−2)pi−1, for i = 0, . . . , (n−1). Then, deg xn ≥ d(pn−1)+2.

63
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If we have the equality for deg xn, we must have

dxn

dx0

= λf(x0)
(pn−1)/2 −

n−1
∑

i=0

xpn−i−1
i

dxi

dx0

,

for some λ ∈ k.

Proof. First, we observe that the first part of conjecture 3.14 depends only on

the existence of the lift of the Frobenius and on Buium’s polynomials Pi, for

i ≤ n.

Let φ denote the Frobenius map and its lift to C, and let U denote the

affine part of C. Then, the conjecture states that the reduction modulo p of

Fn(dx/y) is given by

ω
def
=

1

ypn

0

[

n
∑

i=0

x
(pn−i−1)
i

dxi

dx0

]

dx0.

Let P be a point at infinity of C. We have

ordP (ω) = pnd

ε
−

(

2

ε
+ 1

)

+ ordP

(

n
∑

i=0

x
(pn−i−1)
i

dxi

dx0

)

.

To simplify the notation, we will denote the last summand above α. Also,

let β denote the number of zeros, counted with multiplicity, of ω in U . Since

dx/y is regular on U , ω must be regular on U . Then, by the Riemman-Roch

theorem, we have

εα + dpn − (2 + ε) + β = 2
d− ε

2
− 2 = d− (ε + 2).

Hence,

α ≤ −
d(pn − 1)

ε
.
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By hypothesis, we have

ordP

(

xpn−i−1
i

dxi

dx0

)

= −

[

(pn−i − 1)
d(pi − 1) + 2

ε
+
d(pi − 1) + 2

ε
−

2

ε

]

= −

[

dpn − (d− 2)pn−i + 2

ε

]

> −
d(pn − 1)

ε
,

for i = 1, . . . , (n− 1). Therefore

ordP

(

dxn

dx0

)

≤ −
d(pn − 1)

ε
,

what implies that deg xn ≥ d(pn − 1) + 2.

We have the equality if, and only if, β = 0. But then, ordP (ω) =

d/ε − (2/ε + 1) = ordP (dx0/y0). So, if we write ω = g dx0/y0, for some g in

the function field of C, g has no zeros or poles at infinity. Since ω and dx0/y0

have no poles in U , g has no poles at all, and thus λ
def
= g ∈ k. Thus, we have

ω =
1

ypn

0

[

n
∑

i=0

x
(pn−i−1)
i

dxi

dx0

]

dx0 = λ
dx0

y0

,

what implies the formula for the derivative.

The proof of the above theorem, for p = 3, d = 6 and n = 1, that could

be easily generalized, was shown to the author by Felipe Voloch.

We observe that curves of genus g > 1 do not have a lift of the Frobenius

(see [5]), so the restriction to affine parts is necessary if g > 1. On the

other hand, Mochizuki showed in [4] that there is a lifting of the Frobenius in

some open subset of an ordinary curve of genus g defined by taking off some

(g−1)(p−1) points from the curve. This was what motivated Voloch to prove
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the above theorem for p = 3, d = 6 and n = 1: in this case, the curve has

genus 2 and is necessarily hyperelliptic, and we have two points to be taken

off, that maybe can be put at infinity.

We also note that, although the hypothesis of the theorem seem very

strong, it is still gives us some nice results. Besides the case of Mochizuki lift

just mentioned, we have:

Corollary 4.2. Let ν be a lift from the affine part of C to the affine part of

C/W2(k). Then, deg x1 ≥ d(p− 1) + 2, and if we have the equality, we must

have that the coefficient of xp−1
0 in f(x0)

(p−1)/2, say A, is non zero and

dx1

dx0
= A−1f(x0)

(p−1)/2 − xp−1
0 .

Proof. Remember that having a lift modulo p2 of U gives a lift of the Frobenius

modulo p2, and we can assume that x1 is a polynomial in x0 and y1 is y0 times

a polynomial in x0. Also, the conjecture 3.14 is true for n = 1. Finally

deg x0 = 2 and deg y0 = d. So, we can apply the theorem 4.1 with n = 1. The

fact that λ = A−1, comes from the fact that a derivative of a polynomial in

characteristic p cannot have a term in xp−1
0 .

The above corollary gives a better lower bound for the degree of x1

than the one stated in [8], theorem IV.2, for the case of hyperelliptic curves,

and it is a little more general, since that theorem just applies for d odd. Also,

it gives us a necessary condition to achieve the lower bound: in order for

A−1f(x0)
(p−1)/2−xp−1

0 to be a derivative, f(x0)
(p−1)/2 cannot have a coefficient
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of xrp−1
0 different from zero, except for r = 1, in which case such term is

necessarily non zero.

The condition also seems to be sufficient: we tried several cases when

the condition was satisfied and we were always able to find a lift with the

minimal degree.

Also, another interesting corollary of theorem 4.1 is that for elliptic

curves, if we proceed finding minimal lifts modulo higher powers of p that give

lifts of the Frobenius, then the derivatives of the x̃n, by induction, would have

to be the same as the derivative of xn, and thus deg x̃n = 3pn − 1.

4.2 Mochizuki Lifts

We will now analyze in more detail the case of Mochizuki lifts. As mentioned

before, for p = 3 and g = 2, we would have to take off two points of the curve

to have a lift of the Frobenius. Every curve of genus 2 is hyperelliptic, and if

those points to be taken off are invariant by the hyperelliptic involution, we

can assume that those points are at infinity. So we will consider the curve

C/k : y2
0 = f(x0),

where k is a perfect field of characteristic 3 and degx0
f = 6. In order to have

the minimal degree, we will assume there exists an A ∈ k∗ such that A−1f(x0)−

x2
0 is a derivative, i.e., it does not have the terms in x2

0 and x5
0. Therefore, A

is the coefficient of x2
0 in f(x0), and working in some finite extension of k, we

may assume A = 1. Also, the coefficient of x5
0 has to be zero. So, we can

assume that

f(x0) = x6
0 + α0x

4
0 + β0x

3
0 + x2

0 + γ0x0 + δ0.



68

But, with the linear change of variables

(x0, y0) 7→ (x0 + ε0, y0),

with ε0 satisfying 2ε30 + α0 ε0 + β0 = 0 (again, maybe in some finite extension

of k), allows us to consider f given by

f(x0) = x6
0 + a0x

4
0 + x2

0 + b0x0 + c0.

In this context, such a curve is “ordinary” if a0 6= 0.

Assuming that the lift will have minimal degrees and using the formula

for the derivative of x1 from corollary 4.2, we can use the same algorithm

described for elliptic curves in section 2.6 to compute the Mochizuki lift. We

have a lift of the form

C/W2(k) : y2 = x6 + ax4 + x2 + bx + c,

with

x1 = x7
0 +

b0
a2

0

x6
0 + 2 a0 x

5
0 +

a4
0 c

2
0 + 2 a4

0 + 2 a3
0 b

2
0 + 2 a3

0 c0 + 2 a2
0 b

2
0 c0 + 2 a2

0 c
2
0 + a2

0 + b40
a2

0

x3
0

+ 2 b0 x
2
0 + c0 x0 +

a4
0 b0 + 2 a3

0 b0 c0 + a2
0 b0 + b0

a5
0

F1 = (2 a3
0 + a0) x

4
0 + 2 a0 b0 x

3
0 + (2 a2

0 + 1) x2
0 + (2 a2

0 b0 + b0) x0 + 2 a2
0 c0 + b20

a1 = 2 a5
0 c

2
0+2 a5

0+a
4
0 b

2
0+a

4
0 c0+a

3
0 b

2
0 c0+a

3
0 c

2
0+2 a3

0+a
2
0 c0+2 a0 b

4
0+a0+2 b20+c0

b1 =
[

2 a7
0 b

3
0 c

2
0 + 2 a7

0 b
3
0 + a6

0 b
5
0 + a6

0 b
3
0 c0 + a6

0 b0 c
2
0 + a5

0 b
5
0 c0 + a5

0 b
3
0 c

2
0

+2 a5
0 b

3
0 + a5

0 b0 c0 + a4
0 b0 + 2 a3

0 b
7
0 + 2 a3

0 b0 c0 + a2
0 b0 + b0

]

a−5
0
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c1 =
a7

0 c
3
0 + 2 a5

0 b
2
0 c

2
0 + 2 a4

0 b
4
0 + a3

0 b
4
0 c0 + 2 a2

0 b
4
0 + 2 b40

a5
0

(Remember that yn = y0 Fn, with Fn a polynomial in x0.)

I also checked the case a0 = 0 (when C is not ordinary), where we have:

x1 = x7
0 + 2 b0 x

6
0 + (2 b40 + 2 b20 c0 + 2 c20 + 1) x3

0 + 2 b0 x
2
0 + c0 x0

F1 = x2
0 + b0 x0 + b20

a1 = 2 b20 + c0

b1 = b70 + b50 c0 + b30 c
2
0 + 2 b30 + b0 c0

c1 = 2 b20 c
2
0

If the curve with a0 6= 0 indeed corresponds to the Mochizuki lift, we

should be able to also lift the Frobenius modulo 33. To compute the lift, say

ν = ((x0, x1, x2), (y0, y1, y2)),

that will give the lift of the Frobenius, we use proposition 3.9. We then have

that

dx2

dx0
= y8

0 − x8
0 − x2

1 (y2
0 − x2

0).

Therefore, we have that degx0
x2 ≥ 25. We have done the calculations and

found that the minimal lift having such derivative has in fact degx0
x2 = 25

if a0 6= 0. Checking the minimal lifts for a0 = 0, we found that if b0 6= 0,

then again degx0
x2 = 25. If a0 = b0 = 0, then degx0

x2 = 30. But, we still

need to guarantee the existence of the lift of the Frobenius. To check that, we

construct polynomials P and Q in W3[x] and W3[x,y] respectively, such that

φ(x,y) = (xp + px1 + p2P ,yp + py1 + p2Q).
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is a lift of the Frobenius. We do that by following the idea behind the proof

of proposition 3.8, more precisely formula (3.5) and its analogue for δ2y. We

need then, that x2 − x
p(p−1)
0 x1 minus the reduction modulo p of (xσ

1 (xp) −

x1(x)p)/p + (dx1/dx)σ(xp) · x1 is a p-power, which we get by our choice of

the derivative of x2, and also y2 − y
p(p−1)
0 y1 minus the reduction modulo p of

(yσ
1 (xp,yp) − x1(x,y)p)/p + (∂y1/∂x)σ(xp,yp) · x1 + (∂y1/∂y)σ(xp,yp) · y1

is a p-power. We actually checked both cases, i.e. a0 6= 0 and a0 = 0, and in

both we could find a lift of the Frobenius. The formulas for P and Q when

a0 6= 0 are too long to be put in here, but if a0 = 0, we have that P (x)3 and

Q(x,y)3 are lifts of

(b60 + 2 b20 c
2
0 + b80 c

3
0 + 2 b60 c

4
0 + b60 c

6
0 + 2 c90) x

3
0

+ (b30 + 2 b70 + 2 b110 + 2 b0 c0 + 2 b50 c0 + b90 c0 + 2 b30 c
2
0 + b50 c

3
0 + 2 b30 c

4
0) x

6
0

+ (1 + 2 b80 + 2 b160 + 2 b240 + b60 c0 + 2 b100 c0 + 2 b140 c0 + b80 c
2
0 + 2 b120 c20

+ b20 c
3
0 + b60 c

3
0 + b100 c30 + 2 b140 c30 + 2 c40 + b40 c

4
0 + b80 c

4
0 + b120 c40 + 2 b20 c

5
0

+ b60 c
5
0 + c60 + b120 c60 + 2 b60 c

9
0 + c120 ) x9

0 + (2 b50 + 2 b90 + b30 c0 + 2 b30 c
3
0) x

12
0

+ (b20 + 2 b60 + 2 c0) x
15
0 + (2 b70 + 2 b150 + 2 b0 c0 + 2 b50 c0

+ 2 b30 c
2
0 + b30 c

6
0) x

18
0 + (1 + b80 + 2 b60 c0 + b60 c

3
0 + 2 c60) x

21
0

+ (b50 + b90 + 2 b30 c0 + 2 b30 c
3
0) x

24
0 + b30 x

30
0
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and

y3
0 [2 b100 + b140 + b180 + 2 b40 c0 + 2 b80 c0 + 2 b120 c0 + 2 b60 c

2
0 + c30

+ b120 c30 + 2 b60 c
6
0 + 2 c90 + (b70 + 2 b150 + b0 c0 + b50 c0 + b30 c

2
0 + 2 b90 c

3
0

+ 2 b30 c
6
0) x

3
0 + (1 + 2 b120 + 2 b60 c

3
0 + 2 c60) x

6
0 + 2 b90 x

9
0

+ (2 b20 + c0 + c30) x
12
0 + 2 b30 x

15
0 + (2 + 2 b120 + 2 b60 c

3
0 + 2 c60) x

18
0

+ 2 b30 x
27
0 + x30

0 ]

respectively. The existence of this lift of the Frobenius leads us to believe that

indeed what we just obtained is indeed the Mochizuki lift of C.
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Lúıs Renato Abib Finotti was born in Uberlândia, Minas Gerais, Brazil, on

March 30, 1973, the son of Eliane Espir Abib Finotti and Gilson Finotti. After

completing his work at Palmares High School, São Paulo (Brazil), in 1990, he

entered University of São Paulo. He received the degree of Bachelor of Science

from University of São Paulo in 1994. In 1995, he entered the Masters Program

of University of São Paulo, graduating in 1997. In the same year, he entered

the Ph.D. Program of the University of Texas at Austin.

Permanent address: 2814 Nueces St.
Austin, TX – 78705

This dissertation was typeset with LATEX‡ by the author.

‡LATEX is a document preparation system developed by Leslie Lamport as a special

version of Donald Knuth’s TEX Program.

74


