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Abstract. Building on [Fin09], we give an elementary proof for the well known result

that there exactly d(p− 1)/4e − b(p− 1)/6c supersingular elliptic curves in characteristic

p. We use a related polynomial instead of the supersingular polynomial itself to simplify

the proof and this idea might be helpful to prove other results related to the supersingular

polynomial.

Last revised: June 6, 2020.

1. Introduction

An elliptic curve over a field of characteristic p > 0 is ordinary if its p-torsion is isomorphic

to Z/pZ. Otherwise, its p-torsion is trivial and we say that the elliptic curve is supersingular.

It’s a well known result that there are only finitely many supsersingular elliptic curves

up to isomorphism, and in fact there are exactly d(p − 1)/4e − b(p − 1)/6c supersingular

elliptic curves in characteristic p ≥ 5. More precisely, if k is an algebraically closed field

of characteristic p > 0, or, more generally, if k contains Fp2 , then there are exactly d(p −
1)/4e − b(p − 1)/6c supersingular elliptic curves over k. (See for instance Chapter V of

[Sil85].)

Hence, for a fixed characteristic p > 0, we define the supersingular polynomial (in char-

acteristic p), denoted by ssp(X), as the monic polynomial that has simple roots exactly at

the j-invariants of all supersingular elliptic curves, i.e.,

ssp(X)
def
=

∏
j supersig.

(X − j). (1.1)

In [Fin09], it was proved that the supersingular polynomial can be explicitly written as

ssp(X) =

(
−2

9

)r r2∑
i=r1

(
r

i

)(
i

3i− r

)(
−27

4

)i

Xi−r′1(X − 1728)r
′
2−i, (1.2)

where r
def
= (p − 1)/2, r1

def
= dr/3e, r2

def
= br/2c, r′1

def
= br/3c, and r′2

def
= dr/2e. Note, in

particular, that ssp(X) ∈ Fp[X]. More on the supersingular polynomial, including different
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formulas, can be found in Kaneko and Zagier’s [KZ98], Brillhart and Morton’s [BM04],

and Morton’s [Mor06]. We also note that the published formula in [Fin09] has a typo, but

Eq. (1.2) is correct.

Note that in principle we are working over an algebraically closed field k of characteristic

p > 0, so the supersingular j-invariants in Eq. (1.1) are taken to be in k. On the other

hand, since ssp ∈ Fp[x], the polynomial itself does not depend on k, but simply on its

characteristic.

Formula (1.2) above, which was nearly deduced by Deuring in [Deu41], was fully derived

in [Fin09] by using the fact the an elliptic curve is supersingular if, and only if, its Hasse

invariant is zero. (This result is due to Deuring and Hasse.) This was enough to obtain

an expression quite close to the one above, where only a factor of X or (X − 1728) would

be missing. On the other hand, to show that this polynomial only has simple roots, we

quoted the well-know result that there are exactly (r′2 − r′1) supersingular j-invariants (up

to isomorphism). (See, for instance, Theorem V.4.1(c) from [Sil85].)

At the end of [Fin09] an alternative proof is given, which is completely elementary. We

first observe that ssp(X) has simple roots if, and only if,

G(X)
def
=

r2∑
i=r1

(
r

i

)(
i

3i− r

)(
−27

4

)i

Xi−r1(X − 1728)r2−i (1.3)

has simple roots, as it differs from ssp(X) only by a constant multiple and possible factors

of X or (X − 1728). This second proof is then given by means of the differential equation

X(X − 1728)G′′ + ((−2r2 + 2r1 + 1)X − 1728(2r1 + 1))G′ + (r2 − r1)2G = 0, (1.4)

which is deduced in that same paper. (Note that this differential equation is much sim-

pler than the one for the actual supersingular polynomial ssp(X), which can be found as

Corollary 4.5 from [Fin09].)

(As a side note: the proof of expression (1.2) in [Fin09] is done by first showing the

the right-hand side of this expression is monic and has all the supersingular j-invariants

as roots, and then either quoting the known result on the number of supersingular elliptic

curves or, equivalently, by proving that G above has simple roots.)

Although this latter proof is completely elementary, the deduction of Eq. (1.4) is not

completely natural. It was motivated by similar proofs, and its deduction involved educated

guesses and variation of parameters. Although this is perfectly valid, and give a nice and

short proof of the statement without having to rely on any previous knowledge, as with

the first proof given, we here would like to give a more direct proof of it, without using

the differential equation. This proof is longer, but more direct and completely elementary.
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More importantly, together with [Fin09], it illustrate a technique that can be helpful in

proving results about the supersingular polynomial.

Our goal is then to prove, in a direct and elementary way, the following result:

Proposition 1.1. The polynomial G(X) (as in (1.3)) has only simple roots.

Again, this was the last step in the proof of the formula given by Eq. (1.2), and with that

we get the exact number of supersingular elliptic curves is its degree, i.e., r′2 − r′1.

The original idea to attempt this new proof was to see if the techniques used in [Fin09]

(and here) could be applied to a question of Kaneko and Zagier in [KZ98], where they

ask for an elementary proof for the fact that if p ≡ −1 (mod 12) and ssp(j) = 0, then

ss′p(j) ∈ Fp. The idea was to rephrase the problem in terms of G(X) instead of ssp(X)

(in fact, in terms of F̃ (X), as defined in Eq. (2.3) below). In that situation we have, for

instance, that Eq. (2.7) below would relate F̃ and F̃ ′, which are related to ssp and ss′p.

Unfortunately we could not produce the elementary proof that was asked, but the work

did yield this elementary proof for the number of supersingular elliptic curves.

On the other hand, together with [Fin09], these notes illustrate the overarching point

that sometimes information about ssp(X) can be more easily obtained by studying F̃ (X)

instead, which is in fact the main point we try to make here.

2. The Proof

We start by restating Lemma 2.2 from [Fin09], which will be used here.

Lemma 2.1. Let n and t be positive integers with t ≤ 3n, and n1
def
= max{0, d(3n− t)/3e}

and n2
def
= min{n, b(3n− t)/2c} . Then, if a, b 6= 0, the coefficient of xt in (x3 + ax+ b)n is(

b

a

)3n−t n2∑
i=n1

(
n

i

)(
i

3i− (3n− t)

)(
a3

b2

)i
. (2.1)

Remember that an elliptic curve in characteristic p ≥ 5, given by an equation y2 =

x2 + ax + b is supersingular if, and only if, its Hasse invariant, which is given by that

coefficient of xp−1 of (x3 + ax + b)(p−1)/2, is zero. (Again, see [Sil85].) Then, Lemma 2.1

has a trivial consequence the following corollary:

Corollary 2.2. If k is a field of characteristic p ≥ 5 and E is an elliptic curve given by

E/k : y2 = f(x)
def
= x3 + ax+ b, (2.2)

with a, b 6= 0, then the Hasse invariant of E is(
b

a

)r
F̃

(
a3

b2

)
,
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where

F̃ (X)
def
=

r2∑
i=r1

(
r

i

)(
i

3i− r

)
Xi. (2.3)

So, if a, b 6= 0, then E is supersingular if, and only if, F̃ (a3/b2) = 0.

Observe that if indeed a, b 6= 0, then a3/b2 is an invariant (under isomorphism) of E. In

fact, as done in [Fin09], we have that if

F (X)
def
=

F̃ (X)

Xr1
=

r2∑
i=r1

(
r

i

)(
i

3i− r

)
Xi−r1 , (2.4)

then

G(X) =

(
−27

4

)r1

(X − 1728)r2−r1F

(
−27

4
· X

X − 1728

)
. (2.5)

So, by construction, we have that X = 1728 is not a root of G(X). Also, if T (X) =

−27X/4(X − 1728), then

G′(X) =

(
−27

4

)r1

(X − 1728)r2−r1−2
[
(r2 − r1)(X − 1728)F (T (X)) + 1164F ′(T (X))

]
.

Thus, if X = x0 is a root of G(X) (and so x0 6= 1728), then T (x0) is a root of F (X), and if

x0 is a double root of G(X), then T (x0) is a also a double root of F (X). Therefore, if F (X)

has no double roots, then neither does G(X). Moreover, observe that T (x0) 6= −27/4, so it

suffices that F (X) has no double roots different from X = −27/4. (In fact, X = −27/4 is

not a root of F (X), as seen at the end of Section 3 of[Fin09].)

To make our computations a bit more straight forward, we deal with F̃ (X) instead of

F (X) itself. So, our goal now is to prove the following proposition, which, from our previous

remarks, is enough to prove Proposition 1.1.

Proposition 2.3. If λ is a double (or higher order) root of F̃ (X), then λ is either 0 or

−27/4.

The rest of these notes is devoted to the proof of the proposition above. We proceed

by contradiction. Assume then that we have a double root. If this root is non-zero and

different from −27/4, we can assume that it has the form a3/b2 with a, b 6= 0, with a and b

defining an elliptic curve as in Eq. (2.2). So, assume that F̃ (a3/b2) = 0 and F̃ ′(a3/b2) = 0.

Reminding that f(x)
def
= x3 + ax+ b, let ai and bi be such that

f(x)r =
3r∑
i=0

aix
i and f(x)r−1 =

3r−3∑
i=0

bix
i. (2.6)
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By Lemma 2.1,

bp−4 =

(
b

a

)r r2∑
i=r1

(
r − 1

i

)(
i

3i− r

)(
a3

b2

)i

=

(
b

a

)r r2∑
i=r1

(
1− i

r

)(
r

i

)(
i

3i− r

)(
a3

b2

)i

=

(
b

a

)r (
F̃

(
a3

b2

)
− 1

r

a3

b2
F̃ ′
(
a3

b2

))
. (2.7)

So, if F̃ (a3/b2) = F̃ ′(a3/b2) = 0, then ap−1 = bp−4 = 0.

Let

f r = f1x
p + f2, with deg f1 = r − 1, deg f2 ≤ p− 2;

f r−1 = g1x
p + g2, with deg g1 = r − 4, deg g2 ≤ p− 1.

(Note that ap−1 = 0.)

The proof of the proposition will be broken in smaller steps:

Step 1. deg g2 ≤ p− 5, and hence fi = f gi for i = 1, 2.

Proof. Observing that

d

dx
(f r) =

3r−1∑
i=0

(i+ 1)ai+1x
i,

but also

d

dx
(f r) = −1

2
(3x2 + a)

3r−3∑
i=0

bix
i,

comparing the terms xp−2 in these equations, we obtain bp−2 = 0 (since bp−4 = 0), and

comparing the terms xp−2, we obtain bp−3 = −a bp−1/3. Also, since

3r∑
i=0

aix
i = (x3 + ax+ b)

3r−3∑
i=0

bix
i,

comparing the terms in xp−1 gives that bp−1 = 0, and hence also bp−3 = 0.

�

Step 2.

f g′2 = −3

2
f ′g2. (2.8)

Proof. We have,
d

dx
(f r) = −1

2
f r−1f ′ = −1

2
(f ′g1x

p + f ′g2).

On the other hand, also
d

dx
(f r) = f ′1x

p + f ′2.



6 LUÍS R. A. FINOTTI

So, by Step 1, we have

f ′2 = (−1/2)f ′g2. (2.9)

Again by Step 1, fi = f gi, for i = 1, 2, and so,

f ′2 =
d

dx
(f g2) = f ′g2 + fg′2,

which, together with equation (2.9), gives

f g′2 = −3

2
f ′g2.

�

Step 3. deg g2 = (p− 9)/2.

Proof. By Step 1, we have

g2 =
k∑

i=0

bix
i,

for some k ≤ (p − 5). Comparing coefficients of xk+2 in equation (2.8), we have k bk =

−(9/2)bk. Hence, if p does not divide (2k + 9), then deg g2 ≤ (k − 1).

Since k ≤ (p− 5), we have that 2k + 9 ≤ 2p− 1, and therefore, if p divides 2k + 9, then

p = 2k + 9.

If b(p−9)/2 = 0, then we can proceed as above for all k ≥ 0, thus obtaining that g2 = 0.

Otherwise, deg g2 = (p− 9)/2.

If g2 = 0, then f2 = 0, but f2(0) = br 6= 0. Therefore, deg g2 = (p− 9)/2. �

Step 4. ar−1 6= 0 and

f1 =
1

ar−1
f2.

Proof. By the previous step, and since f2 = f g2, we have that deg f2 = (p− 3)/2 = (r− 1),

and hence ar−1 6= 0. Now,

(x3p + apxp + bp) = fp = f(f r)2 = f (f2
1x

2p + 2f1f2x
p + f2

2 ).

Thus, since deg f2
1 = deg f2

2 = deg f1 f2 = (p− 3) (observe that f1 is monic),

f

(
1

ar−1
f2

)2

= xp + C1,

f f2
1 = xp + C2,

with C1, C2 ∈ k. It follows, by the uniqueness of the quotient of the division of xp by f ,

that f2
1 = (1/ar−1 f2)2. Hence, since f1 and (1/ar−1)f2 are monic, f1 = (1/ar−1)f2.

�
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This last step gives us:

(x3 + ax+ b)(f2
1x

2p + 2ar−1f
2
1x

p + a2
r−1f

2
1 ) = (x3p + apxp + bp). (2.10)

Comparing the terms in x2p, xp and constant term, we have

bf1(0)2 + 2ar−1 = 0,

b2ar−1f1(0)2 + a2
r−1 = ap,

ba2
r−1f1(0)2 = bp.

It follows that

bf1(0)2 = −2ar−1,

bp = −2a3
r−1,

ap = −3a2
r−1.

Hence, (a3/b2)p = −27/4, and so a3/b2 = −27/4, which contradicts our assumptions and

concludes the proof of Proposition 2.3.
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