
NONEXISTENCE OF PSEUDO-CANONICAL LIFTINGS

LUÍS R. A. FINOTTI

Abstract. In this paper we show that pseudo-canonical liftings do not exist, by showing

that if j0 7→ (j0, J1(j0), J2(j0), . . .) is the map that gives canonical liftings for ordinary j0,

then J2 has a pole at j0 = 1728 if p ≡ 3 (mod 4) and J3 has a pole at j0 = 0 if p ≡ 5

(mod 6). Moreover, precise descriptions of J2 and J3 are given.

1. Introduction

Let k be a perfect field of characteristic p > 0, W(k) be the ring of Witt vectors over k,

and Wn(k) denote the ring of Witt vectors of length n, which in this case can be seen as

the quotient of W(k) modulo the principal ideal generated by pn. Then, given an ordinary

elliptic curve E/k, there is a unique elliptic curve (up to isomorphism), say E/W(k),

which reduces to E modulo p and for which we can lift the Frobenius. E is then called the

canonical lifting of E. (See, for instance, [Deu41] or [LST64].) Hence, given an ordinary

j-invariant j0 ∈ k, the canonical lifting gives us a unique j ∈ W(k). Therefore, if kord

denotes the set of ordinary values of j-invariants in k, then we have functions Ji : kord → k,

for i = 1, 2, 3, . . ., such that the j-invariant of the canonical lifting of an elliptic curve with

j-invariant j0 ∈ kord is (j0, J1(j0), J2(j0), . . .).

B. Mazur asked about the nature of these functions Ji and J. Tate asked about the

possibility of extending them to supersingular values.

We’ve proved that the functions Ji are rational functions over Fp in [Fin10]. Tate’s

question motivates the following definition:

Definition 1.1. Suppose that j0 6∈ kord and Ji is regular at j0 for all i ≤ n. Then, we call

an elliptic curve over W(k) whose j-invariant reduces to (j0, J1(j0), . . . , Jn(j0)) modulo pn+1

a pseudo-canonical lifting modulo pn+1 (or over Wn+1(k)) of the elliptic curve associated

to j0.

If Ji is regular for all i, we call the elliptic curve with j-invariant (j0, J1(j0), J2(j0), . . .)

the pseudo-canonical lifting of the elliptic curve associated to j0.
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Hence, Tate asks about the existence of such pseudo-canonical liftings. One would not

expect pseudo-canonical liftings to exist, as they would yield curves which although are not

canonical liftings, as those do not exist in the supersingular case, are obtained by the same

formulas. On the other hand, we’ve proved that pseudo-canonical liftings modulo p2 and

p3 do exist for specific supersingular values. More precisely, we’ve studied J1 and J2 in

detail in [Fin10] (using many results from [KZ98]) and [Fin11b] respectively, proving the

following:

Theorem 1.2. With the notation above and p ≥ 5:

(1) J1(X) is always regular at X = 0 and X = 1728, even when those values are

supersingular, and (0, J1(0)) ≡ 0 (mod p2) and (1728, J1(1728)) ≡ 1728 (mod p2).

(2) If j0 6∈ kord ∪ {0, 1728}, then J1 has a simple pole at j0.

(3) J2(X) is always regular at X = 0, even if 0 is supersingular, and (0, J1(0), J2(0)) ≡ 0

(mod p3).

(4) If j0 6∈ kord ∪ {0, 1728}, then J2 has a pole of order 2p+ 1 at j0.

As one can see, this statement does not give any information modulo p3 in the case of

1728 being supersingular. We will prove here the following theorem, which was stated as a

conjecture in [Fin10], more precisely, item (1) of Conjecture 9.3.

Theorem 1.3. If 1728 6∈ k
ord (i.e., if p ≡ 3 (mod 4)), then J2 has a pole of order p at

1728.

So, this would tell us 1728 never yields pseudo-canonical liftings, leaving 0 as the only

possibility. On the other hand, we will also show here that 0 also fails. This again was a

conjecture of [Fin10], more precisely, Conjecture 10.1. (In fact, we prove here that Con-

jecture 9.7 from [Fin11b], which is equivalent to item (2) of Conjecture 9.3 from the same

reference, is equivalent to Conjecture 10.1, and therefore all conjectures of [Fin11b] are

proved here.)

Theorem 1.4. If 0 6∈ kord (i.e., if p ≡ 5 (mod 6)), then J3 has a pole of order p2 at 0.

This gives a complete answer to Tate’s question, showing that, as expected, no pseudo-

canonical lifting exist, and the only possible ones modulo p2 are given by 0 and 1728, and

modulo p3, only by 0.

We will heavily rely on results and techniques from the author’s [Fin10] and [Fin11b],

although we will restate most of the necessary results. It should also be observed that

Kaneko and Zagier’s [KZ98], from which many results from [Fin10] are derived, provided

many of the necessary tools, although we may refer to [Fin10] instead, as the results are
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phrased in a more compatible way. Finally, we will also need results from [Fin11a], which

will be the main tool to analyze the properties of J3.

We now give a brief description of the next sections. In Section 2 we review the concept

of the Greenberg transform of a polynomial and recall the formulas for those which were

derived in [Fin11b] and [Fin11a]. In Section 3 we introduce some alternatives to the j-

invariant which will help us deal with the pole of J2 at 1728, similarly to what was done in

[Fin10]. In Section 4 we use these invariants to prove Theorem 1.3. In Section 5 we give

a formula for J3, similar to the formula for J2 given in [Fin11b], while in Section 6 we use

this formula to prove Theorem 1.4. Finally, on Section 7 we give some more information on

the formulas for J2 and J3.

2. The Greenberg Transform

In this section we briefly review the definition of the Greenberg transform. (See also

[Lan52] and [Gre61].)

Definition 2.1. Let f(x,y) ∈ W(k)[x,y]. If we replace x and y by (x0, x1, . . .) and

(y0, y1, . . .), seen as Witt vectors of unknowns, and expand the resulting expression us-

ing sums and products of Witt vectors, we obtain a Witt vector (f0, f1, . . .), with fi ∈
k[x0, . . . , xi, y0, . . . , yi]. This resulting vector is called the Greenberg transform of f and

will be denoted by G (f).

Moreover, if

C/W(k) : f(x,y) = 0,

we define the Greenberg transform G (C) of C to be the (infinite dimensional) variety over

k defined by the common zeros of the coordinates of G (f).

It is clear from the definition that there is a bijection between C(W(k)) and G (C)(k).

We will need the formula for the second coordinate of the Greenberg transform of a

polynomial. This is given by Theorem 6.1 from [Fin11b], restated below as Theorem 2.4.

But before we can state it, we need some extra notation:

Definition 2.2. Let p be a prime. Define η0(X1, . . . , Xr)
def
= X1 + · · ·+Xr, and recursively

for k ≥ 1

ηk(X1, . . . , Xr)
def
=

Xpk

1 + · · ·+Xpk
r

pk
−
k−1∑
i=0

ηi(X1, . . . , Xr)
pk−i

pk−i
. (2.1)

Also, define ηk(X1) = 0 for k ≥ 1.

If R is a ring of characteristic p and v = (a1, . . . , ar) ∈ Rr, we define ηk(v) = ηk(a1, . . . , ar)

as the evaluation of ηk(X1, . . . , Xr) at v. (This makes sense as ηk(X1, . . . , Xr) ∈ Z[X1, . . . , Xr].

See [Fin11a].)
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Moreover, if f is a polynomial (possibly in many variables) with coefficients in R, we

write vec (f) for the vector that contains the terms of f (after some choice of order for the

monomials). We then may write ηk(f) for ηk(vec (f)). (It is important to observe that we

are assuming that the terms are reduced, i.e., if f = 1 + X + 2X, then vec (f) = (1, 3X),

not (1, X, 2X).)

Sometimes it will be useful to use the following notation:

Definition 2.3. Given f =
∑

i,j ai,jx
iyj ∈W(k)[x,y] and a positive integer n, define

f [pn] def
=
∑
i,j

ap
n

i,jx
ipnyjp

n
.

We also define ηk(f) to be the reduction modulo p of

ηk(f) = ηk(vec (f)) =
f [pk] − fp

k

pk
− η1(vec (f))p

k−1

pk−1
− · · · − ηk−1(vec (f))p

p
. (2.2)

Then, if f reduces to f modulo p, we have that ηk(f) = ηk(f).

With the notation above, we can give a formula for the third coordinate of the Greenberg

transform of f .

Theorem 2.4. Let f ∈W(k)[x,y] be given by

f(x,y) =
∑
i,j

ai,jx
iyj ,

with partial derivatives with respect to x and y

fx(x,y) =
∑
i,j

bi,jx
iyj and fy(x,y) =

∑
i,j

ci,jx
iyj ,

respectively. Also, let f be the reduction modulo p of f (and use subscripts x0 and y0 to

denote its partial derivatives), and

ai,j ≡ (ai,j,0, ai,j,1, ai,j,2) (mod p3),

bi,j ≡ (bi,j,0, bi,j,1, bi,j,2) (mod p3),

ci,j ≡ (ci,j,0, ci,j,1, ci,j,2) (mod p3).
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Then, the third coordinate of the Greenberg transform of f is given by

fp
2

x0x2 + fp
2

y0 y2 +

∑
i,j

bi,j,1x
ip
0 y

jp
0

p

xp1 +

∑
i,j

ci,j,1x
ip
0 y

jp
0

p

yp1

+ (fx0x0/2)p
2
x2p

1 + fp
2

x0y0x
p
1y
p
1 + (fy0y0/2)p

2
y2p

1 +
∑
i,j

ai,j,2x
ip2

0 yjp
2

0

+ η1(fpx0x1 + fpy0y1 +
∑
i,j

ai,j,1x
ip
0 y

jp
0 )

+ η1(fpx0x1 + fpy0y1 +
∑
i,j

ai,j,1x
ip
0 y

jp
0 , η1(f)) + η2(f). (2.3)

We also need a formula for the fourth coordinate of the Greenberg transform. In [Fin11a]

we give a general formula (Theorem 5.4). Since this general formula is too convoluted in the

general setting, we will give here only the particular case of the fourth coordinate here. The

formula is still quite involved, and we need to introduce some extra notation in addition to

the notation from Theorem 2.4.

Let

1

2
fxx(x,y) =

∑
i,j

di,jx
iyj , fxy(x,y) =

∑
i,j

ei,jx
iyj ,

1

2
fyy(x,y) =

∑
i,j

f i,jx
iyj ,

and

di,j ≡ (di,j,0, di,j,1) (mod p2),

ei,j ≡ (ei,j,0, ei,j,1) (mod p2),

f i,j ≡ (fi,j,0, fi,j,1) (mod p2).

Moreover, let G1 be the vector

vec

(fx)px1 + fpy y1 +
∑
i,j

ai,j,1x
ip
0 y

jp
0


with η1(f) appended (at the last entry) to it, and G2 be

vec

fp2x0x2 + fp
2

y0 y2 +

∑
i,j

bi,j,1x
ip
0 y

jp
0

p

xp1 +

∑
i,j

ci,j,1x
ip
0 y

jp
0

p

yp1

+(fx0x0/2)p
2
x2p

1 + fp
2

x0y0x
p
1y
p
1 + (fy0y0/2)p

2
y2p

1 +
∑
i,j

ai,j,2x
ip2

0 yjp
2

0


with η1(G1) and η2(f) appended (at the last two entries) to it.

We then have:
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Theorem 2.5. With the notation above and p ≥ 3, the fourth coordinate of the Greenberg

transform of f is given by∑
i,j

ai,j,3x
ip3

0 yjp
3

0 + fp
3

x0x3 + fp
3

y0 y3+

+

∑
i,j

bp
2

i,j,1x
ip3

0 yjp
3

0

xp2 +

∑
i,j

cp
2

i,j,1x
ip3

0 yjp
3

0

 yp2

+

∑
i,j

bpi,j,2x
ip3

0 yjp
3

0

xp
2

1 +

∑
i,j

cpi,j,2x
ip3

0 yjp
3

0

 yp
2

1

+ (fx0x0)p
3
xp

2

1 x
p
2 + fp

3

x0y0(xp
2

1 y
p
2 + xp2y

p2

1 ) + (fy0y0)p
3
yp

2

1 y
p
2

+

∑
i,j

dp
2

i,j,1x
ip3

0 yjp
3

0

x2p2

1 +

∑
i,j

ep
2

i,j,1x
ip3

0 yjp
3

0

xp
2

1 y
p2

1 +

∑
i,j

fp
2

i,j,1x
ip3

0 yjp
3

0

 y2p2

1

+ (fx0x0x0/6)p
3
x3p2

1 + (fx0x0y0/2)p
3
x2p2

1 yp
2

1 + (fx0y0y0/2)p
3
xp

2

1 y
2p2

1 + (fy0y0y0/6)p
3
y3p2

1

+ η1(G2) + η2(G1) + η3(f). (2.4)

3. Alternative Invariants

To prove Theorem 1.3 we will use a couple of different invariants.

Definition 3.1. If j is the j-invariant of an elliptic curve, we shall denote ̂
def
= j − 1728.

We may refer to this alternative invariant as the ̂-invariant of the elliptic curve.

Let also Φ̂p(X,Y ) = Φp(X + 1728, Y + 1728), where Φp is the (classical) modular poly-

nomial. Hence, two curves with ̂-invariants ̂1 and ̂2 have an isogeny of degree p between

them if, and only if, Φ̂p(̂1, ̂2) = 0.

Now, if ̂0 is the ̂-invariant of an ordinary elliptic curve in characteristic p, then, as with

the original j-invariant (see [Fin10]), the ̂-invariant of its canonical lifting is given by

̂ = (̂0, Ĵ1(̂0), Ĵ2(̂0), . . .) = (j0, J1(j0), J2(j0), . . .)− 1728, (3.1)

where Ĵi(X) ∈ Fp(X) and j0 = ̂0 + 1728 is the usual j-invariant of the curve.

The other invariant that we need was studied in [Fin10].

Definition 3.2. We define the ˜̃ of an elliptic curve with j 6= 0 to be

˜̃ =
4(1728− j)

27j
= − 4̂

27(̂+ 1728)
. (3.2)

This other invariant also has its own corresponding rational functions giving the canonical

lifting, say ˜̃Ji(X), which can be obtained from the Ĵi(X) (or Ji(X)) using Eq. (3.2).
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The first step in proving Theorem 1.3 is to obtain the proper formula for Ĵ2 from Φ̂p, in

the same way we’ve obtained a formula for J2 from Φp in [Fin11b]. In fact, the computation

is quite similar, as Φ̂p(X,Y ) ≡ Φp(X,Y ) (mod p).

Applying Theorem 2.4, we obtain the following proposition, which is the analogue of

Theorem 9.1 from [Fin11b].

Proposition 3.3. Let

Φ̂p =
∑
i,j

âi,jX
iY j , (Φ̂p)X =

∑
i,j

b̂i,jX
iY j , and (Φ̂p)Y =

∑
i,j

ĉi,jX
iY j ,

respectively, with âi,j = (âi,j,0, âi,j,1, . . .), b̂i,j = (b̂i,j,0, b̂i,j,1, . . .), ĉi,j = (ĉi,j,0, ĉi,j,1, . . .).

Also, let

ĝ2(X0, Y0, Y1)
def
= η1((Y p

0 −X0)pY1 +
∑
i,j

âi,j,1X
ip
0 Y

jp
0 ).

Then, ĝ2(X,Xp, Ĵ1(X)p) is a p-power and

Ĵ2(X) =
−1

(Xp2 −X)p

∑
i,j

b̂i,j,1X
ip+jp2

 Ĵ1(X) +

∑
i,j

ĉi,j,1X
ip+jp2

 Ĵ1(X)p

−Ĵ1(X)p+1 +
∑
i,j

âi,j,2X
ip+jp2 + ĝ2(X,Xp, Ĵ1(X)p)1/p

 . (3.3)

Proof. By Theorem 3 of [LST64], we have that if (j0, J1, . . .) is the j-invariant of the canon-

ical lifting of the curve with j-invariant j0, then

Φp((j0, J1, . . .), (j
p
0 , J

p
1 , . . .)) = 0. (3.4)

So, if j = (j0, J1, J2, . . .) and ̂ = (̂0, Ĵ1, Ĵ2, . . .) are the j and ̂-invariants of the canonical

lifting of the curves with j and ̂-invariants j0 and ̂0 respectively, then

Φ̂p((̂0, Ĵ1, Ĵ2), (̂p, Ĵp1 , Ĵ
p
2 )) ≡ Φp((j0, J1, J2), (jp, Jp1 , J

p
2 )) ≡ 0 (mod p3),

and thus the proof is virtually the same as the proof of Theorem 9.1 from [Fin11b]. �

We shall keep the notation of Proposition 3.3 throughout the next section.

4. Pole of J2 at 1728

We shall prove Theorem 1.3 in this section. We will need some preliminary results.

Lemma 4.1. Let K be a field and v a valuation on K, u = (u0, u1),v = (v0, v1) ∈W2(K)

with v(u0) = 0, v(v0) = 1, and v(u1), v(v1) ≥ 0. If w = (w0, w1) = u · v, then v(w1) ≥
min{v(v1), p}.



8 LUÍS R. A. FINOTTI

Proof. This is a simple application of the formulas for products of Witt vectors. Since

w1 = up0v1 + u1v
p
0 ,

clearly the statement about v(w1) holds. �

Let v0 = ordX=0, the order of zero at X = 0. (We shall keep this notation.) We then

have:

Lemma 4.2. With the previous notation, we have v0(Ĵ1) ≥ min{v0( ˜̃Ji), p}, and v0( ˜̃J1) ≥
min{v0(Ĵ1), p}.

Proof. Let

X̂
def
= −1728

27X

27X + 4
, ˜̃X

def
= − 4X

27(X + 1728)
,

and

̂(X) = (X, Ĵ1(X)), ˜̃(X) = (X, ˜̃J1(X)).

Then, by Eq. (3.2), we have that

̂(X) = − 1728 · 27

27˜̃( ˜̃X) + 4
· ˜̃( ˜̃X).

Let

− 1728 · 27

27˜̃( ˜̃X) + 4
= (α0(X), α1(X)).

By Propositions 4.2 and 4.3 of [Fin10], we have that v0( ˜̃J1(X)) ≥ (p− 1)/2, and hence the

left hand side of this equation is regular at X = 0. Moreover, it is different from zero when

evaluated at X = 0 (or ˜̃X = 0), and therefore we have that v0(α0) = 0, and v0(α1) ≥ 0. We

can then apply Lemma 4.1, and thus v0(Ĵ1) ≥ min{v0( ˜̃J1), p}, and thus v0(Ĵ1) ≥ (p− 1)/2.

We also have, again by Eq. (3.2), that

˜̃(X) = − 4

27(̂(X̂) + 1728)
· ̂(X̂).

Let

− 4

27(̂(X̂) + 1728)
= (β0(X), β1(X)).

Again, since v0(Ĵ1) ≥ (p − 1)/2, the left hand side of this equation is regular at X = 0,

and different from zero when evaluated at X = 0 (or X̂ = 0), and hence v0(β0) = 0, and

v0(β1) ≥ 0. Lemma 4.1 then gives us that v0( ˜̃J1) ≥ min{v0(Ĵ1), p}. �

Lemma 4.3. The following are equivalent:

(1) J2(X) has a pole of order p at X = 1728.

(2) Ĵ2(X) has a pole of order p at X = 0.
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(3) â0,0,2 6= 0.

Proof. The equivalence of the first two items is an immediate consequence of Eq. (3.1) and

arithmetic of Witt vectors. More precisely, if 1728 = (γ0, γ1, γ2), then

Ĵ1(X − 1728) = J1(X) + γ1 + η1(X, γ0).

Since, η1(X,Y ) is a polynomial and J1 is regular at X = 1728 (by Theorem 1.2), we have

that Ĵ1 is regular at X = 0. In the same way,

Ĵ2(X − 1728) = J2(X) + γ2 + f(X, J1, γ0, γ1)

for some polynomial f and hence γ2 + f(X, J1, γ0, γ1) is regular at X = 1728. The equiva-

lence of the first two items then follows immediately.

The equivalence of the last two items follows from Eq. (3.3). Indeed, as observed in the

proof of Lemma 4.2, Ĵ1(X) has a zero at X = 0. This also implies that ĝ2(X,Xp, Ĵ1(X)p)1/p

has a zero at X = 0. Thus, Eq. (3.3) gives us that Ĵ2(X) has a pole of order p at X = 0 if,

and only if, â0,0,2 6= 0. �

We shall prove then that â0,0,2 6= 0. To do this, we follow the same idea used in [Fin11b]

to show that the corresponding a0,0,2 for the usual modular polynomial Φp is zero.

Proposition 4.4. If â0,0,2 = 0, then v0( ˜̃J1) ≥ (p+ 1)/2.

Proof. We use square roots of ̂ to obtain a simplified polynomial Ψ̂p such that Ψ̂p(̂
1/2
1 , ̂

1/2
2 ) =

0 if the elliptic curves associated to ̂1 and ̂2 have an isogeny of degree p. This is the ana-

logue of the polynomial Ψp from [Fin11b] (which we will use again in Section 6), and satisfies

the analogous property:

Φ̂p(X
2, Y 2) = Ψ̂p(X,Y )Ψ̂p(X,−Y ). (4.1)

(This corresponds to Eq. (23) of [Elk98] for Φ̂p.) This clearly implies that

Φ̂p(X
2, 0) =

(
Ψ̂p(X, 0)

)2
(4.2)

and hence â0,0 is a square. By Kronecker’s relation,

Ψ̂p(X, 0) ≡ Xp+1 (mod p) (4.3)

(as Φ̂p(X, 0) ≡ Xp+1 (mod p)). Then, Eq. (4.3) implies that all coefficients of Ψ̂p(X, 0)

are divisible by p, except for the coefficient of Xp+1. Thus, by Eq. (4.2), we have that

vp(âi,0) ≥ 2 for all i < (p+ 1)/2, where vp denotes the valuation at p.
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Since â0,0 is a square, if â0,0,2 = 0, then p4 | â0,0, and thus p2 | Ψ̂p(0, 0). This last

condition implies that p2 | â(p+1)/2,0, and we then have that ai,0,1 = 0 for i ∈ {0, . . . , (p +

1)/2}.
Now, the same proof from [Fin10] that gives

J1(X) ≡ − Φp(X,X
p)

p(Xp2 −X)
(mod p)

also gives the equivalent formula for Ĵ1, namely,

Ĵ1(X) ≡ − Φ̂p(X,X
p)

p(Xp2 −X)
≡ −

∑
âi,j,1X

i+jp

Xp2 −X
(mod p).

But, by the computation above, this implies that v0(Ĵ1) ≥ (p+ 1)/2. And by Lemma 4.2,

we have that v0( ˜̃J1) ≥ (p+ 1)/2. �

We finally can prove Theorem 1.3.

Proof of Theorem 1.3. By Lemma 4.3, it suffices to prove that â0,0,2 6= 0. Assume that

â0,0,2 = 0. In the proof of Proposition 5.6 of [Fin10], it is shown if ˜̃J1(X) has a zero of order

greater than or equal to s + 1 at 0, then the t-th derivative of J1 at X = 1728 is given by

J
(t)
1 (1728) = −(t− 1)!(−1728)1−t for 1 ≤ t ≤ s. Hence, by Proposition 4.4, we obtain that

J
((p−1)/2)
1 (1728) = −((p− 3)/2)! (−1728)−(p−3)/2 (4.4)

= (−1)(p−1)/2((p− 3)/2)! 1728(p+1)/2.

Now, since p ≡ 3 (mod 4), we have that Eq. (38) from [KZ98] (or from Theorem 3.2(3)

from [Fin10]) reduces to

J ′1(X) = −Xp−1 +Xr (X − 1728)(p+1)/2

ssp(X)2
(4.5)

= −Xp−1 + (X − 1728)(p−3)/2 Xr

f(X)
,

where

r
def
=

(2p− 2)/3, if p ≡ 1 (mod 6),

(2p+ 2)/3, if p ≡ 5 (mod 6),

and f(1728) 6= 0.

Now, since

d(p−3)/2

dX(p−3)/2
(−Xp−1)

∣∣
X=1728

= (−1)(p−1)/2((p− 3)/2)! 1728(p+1)/2,
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while
d(p−3)/2

dX(p−3)/2

(
(X − 1728)(p−3)/2 Xr

f(X)

)∣∣∣∣
X=1728

=
1728r

f(1728)
6= 0,

Eq. (4.5) implies that J
(p−1)/2
1 (1728) 6= (−1)(p−1)/2((p − 3)/2)! 1728(p+1)/2, contradicting

Eq. (4.4). Thus, we must have that â0,0,2 6= 0. �

5. Formula for J3

We will now deduce the formula for J3 from Eq. (2.4).

As with proof of the formula for J2 from [Fin11b] (the analogous to Eq. (3.3) above), the

main idea is again to use Eq. (3.4).

We will use the notation of Theorems 2.4 and 2.5 for f = Φp. So, in particular, f =

(x0 − yp0)(xp0 − y0) (by Kronecker’s relation) and fx0 = xp0 − y0. Thus, we can obtain J3 by

evaluating Eq. (2.4) at ((x0, . . . , x3), (y0, . . . , y3)) = ((j0, J1, J2, J3), (jp0 , J
p
1 , J

p
2 , J

p
3 )). Thus,

we can find an expression for Jp3 .

On the other hand, terms from Eq. (2.4) that are divisible by (xp0 − y0) will vanish when

evaluating, and hence can be discarded from the formula for J3.

Since we will often lift to characteristic 0 and use Eq. (2.2), we should note that since

(xp − y) is primitive, we have that if g ∈ Z[x,y] and g = (xp − y)g1, with g1 ∈
Q[x0, x1, . . . , y0, y1, . . .], then in fact g1 has integral coefficients.

Lemma 5.1. If p 6= 2, then ηk(f) ≡ 0 (mod (xp0 − y0)) for all k ≥ 1.

Proof. We have that ηk(f) = ηk(f1), where f1 = (x−yp)(xp−y). Then, if p 6= 2, we have

f
[pk]
1 = (xp

k − yp
k+1

)(xp
k+1 − yp

k
) = (xp − y)f1,k,

for some f1,k ∈ Z[x,y]. Thus,

f
[pk]
1 − fp

k

1

pk
= (xp − y)f2,k.

Hence, with k = 1 we have that η1(f1) ≡ 0 (mod (xp0 − y0)).

Inductively, we get

f [pk] − fp
k

pk
− η1(f)p

k−1

pk−1
− · · · − ηk−1(f)p

p
≡ 0 (mod (xp − y)),

and hence ηk(f) ≡ 0 (mod (xp0 − y0)). �

Lemma 5.2. If g1 ≡ 0 (mod (xp0 − y0)), then ηk(g1, g2) ≡ 0 (mod (xp0 − y0)).

Proof. Let g1, g2 ∈ Z[x,y] be liftings of g1 and g2. Since g1 ≡ 0 (mod (xp0 − y0)), we can

assume that g1 ≡ 0 (mod (xp − y)).
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We clearly have that

pk−1∑
i=1

1

pn

(
pk

i

)
gi1g

pk−i
2 ≡ 0 (mod (xp − y))

(in Q[x,y]). If k = 1, then we obtain η1(g1, g2) = η1(g1, g2) ≡ 0 (mod (xp0 − y0)).

Inductively, we obtain that ηk(g1, g2) = ηk(g1, g2) ≡ 0 (mod (xp0 − y0)), as it is the

reduction modulo p of

pk−1∑
i=1

1

pn

(
pk

i

)
gi1g

pk−i
2 − η1(g1, g2)p

k−1

pk−1
− · · · − ηk−1(g1, g2)p

p
≡ 0 (mod (xp − y)).

�

The following Lemma gives particular cases of Proposition 4.4 from [Fin11a]:

Lemma 5.3. Let

Mi,1
def
= ηi(X1, . . . , Xn)

Mi,2
def
= ηi(Xn+1, . . . , Xn+m)

Mi,3
def
= ηi(X1 + · · ·+Xn, Xn+1 + · · ·+Xn+m).

Then, we have

η1(X1, . . . , Xn+m) = M1,1 + M1,2 + M1,3.

and

η2(X1, . . . , Xn+m) = M2,1 + M2,2 + M2,3 + η1(M1,1,M1,2,M1,3).

In particular, if m = 1, we get

η1(X1, . . . , Xn+1) = M1,1 + M1,3

and

η2(X1, . . . , Xn+1) = M2,1 + M2,3 + η1(M1,1,M1,3).

We then have:

Proposition 5.4. Let p ≥ 3 and

H1
def
= vec

(fx)px1 + (fy)
py1 +

∑
i,j

ai,j,1x
ip
0 y

ip
0

 ,



NONEXISTENCE OF PSEUDO-CANONICAL LIFTINGS 13

h = fp
2

x0x2 + fp
2

y0 y2 +

∑
i,j

bi,j,1x
ip
0 y

jp
0

p

xp1 +

∑
i,j

ci,j,1x
ip
0 y

jp
0

p

yp1

+ (fx0x0/2)p
2
x2p

1 + fp
2

x0y0x
p
1y
p
1 + (fy0y0/2)p

2
y2p

1 +
∑
i,j

ai,j,2x
ip2

0 yjp
2

0 ,

and H2 = vec (h). Then (still with the notation from Theorem 2.5),

η2(G1) ≡ η2(H1) (mod (xp0 − y0))

and

η1(G2) ≡ η1(H2) + η1(h, η1(H1)) (mod (xp0 − y0)).

Proof. Let

h1 =
∑
t∈H1

t = (fx)px1 + fpy y1 +
∑
i,j

ai,j,1x
ip
0 y

ip
0 .

By Lemma 5.3, we have

η2(G1) = η2(H1) + η2 (h1, η1(f)) + η1 (η1(H1), η1 (h1, η1(f))) .

By Lemma 5.1, η1(f) ≡ 0 (mod (xp0− y0)) and thus, by Lemma 5.2, we get the first desired

congruence.

Also, again by Lemma 5.3,

η1(G2) = η1(H2) + η1(η1(G1), η2(f)) + η1 (h, η1(G1) + η2(f)) . (5.1)

By Lemmas 5.1, 5.2, and 5.3, we get that

η1(G1) = η1(H1) + η1 (h1, η1(f)) ≡ η1(H1) (mod (xp0 − y0))

and

η1(η1(G1), η2(f)) ≡ 0 (mod (xp0 − y0)). (5.2)

Moreover, since 1
p

(
p
i

)
∈ Z for i ∈ {1, . . . , p− 1}, we get

η1(h, η1(G1) + η2(f)) =

p−1∑
i=1

1

p

(
p

i

)
hi(η1(G1) + η2(f))p−i

≡
p−1∑
i=1

1

p

(
p

i

)
hi(η1(H1))p−1 (5.3)

= η1(h, η1(H1)) (mod (xp0 − y0)).

Thus, Eqs. (5.1), (5.2), and (5.3) give the desired formula. �

Finally, we can give the simplified formula for J3.
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Theorem 5.5. Let p ≥ 3. With the notation above, we have that if g3(x0, x1, x2, y0, y1, y2)
def
=

η2(H1) + η1(H2) + η1(h, η1(H1)), then g3(X, J1(X), J2(X), Xp, J1(X)p, J2(X)p) is a p-th

power and

J3(X) = − 1

(Xp2 −X)p2

∑
i,j

ai,j,3X
ip2+jp3

+

∑
i,j

bi,j,1X
ip2+jp3

 J2 +

∑
i,j

ci,j,1X
ip2+jp3

 Jp2

+

∑
i,j

bi,j,2X
ip2+jp3

 Jp1 +

∑
i,j

ci,j,2X
ip2+jp3

 Jp
2

1

− (Jp1J
p
2 + Jp

2

1 J2) +

∑
i,j

di,j,1X
ip2+jp3

 J2p
1

+

∑
i,j

ei,j,1X
ip2+jp3

 Jp+p
2

1 +

∑
i,j

fi,j,1X
ip2+jp3

 J2p2

1

+ g3(X, J1, J2, X
p, Jp1 , J

p
2 )1/p

 (5.4)

Proof. Applying the formula for the Greenberg transform from Theorem 2.5 to Φp(x,y) and

evaluating at (x0, x1, x2, x2, y0, y1, y2, y3) = (X, J1, J2, J3, X
p, Jp1 , J

p
2 , J

p
3 ) should give zero by

Eq. (3.4).

We then obtain the desired formula applying Proposition 5.4 to simplify the terms in-

volving the ηi’s, solving for Jp3 , and taking p-th roots. Observe that since Φp has integral

coefficients, we have that the coefficients of the sums above are in Fp, and so invariant under

p-th powers.

Finally, the fact that g3 is a p-th power follows from the fact that J3(X) ∈ Fp(X). [See

[Fin10].] �

We have computed J3 before in [Fin11a] by using general methods to compute the Green-

berg transform of a polynomial (by means of Theorem 2.5 above). The simplification given

by Proposition 5.4 above gives significant improvements in memory usage. Table 5.1 below

shows differences in times and memory usages with (“New”) and without (“Old”) using

Proposition 5.4. The tests were performed using MAGMA (version 2.16-1) on a Dell Preci-

sion 690 server with two dual-core 64 bit 3.2 gigahertz Inter Xeon processors, 16 gigabytes

of RAM, and 8 gigabytes of swap, running Fedora Core 11 (GNU/Linux) with kernel 2.6.30.
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Old New
Char. time (sec.) memory (MB) time (sec.) memory (MB)

7 7.300 40.97 5.089 33.22
11 421.090 1010.03 289.439 103.94
13 6542.590 4175.28 7496.840 356.16
17 −− −− 45967.959 1982.28
19 −− −− 267733.840 3650.62
23 −− −− 1574171.979 13647.28

Table 5.1. Computations of J3

6. Pole of J3 at 0

In this section we prove Theorem 1.4. We shall keep the notation from the previous

sections and assume p ≥ 5.

Lemma 6.1. Let p ≥ 5. The function g3(X, J1, J2, X
p, Jp1 , J

p
2 ) has a zero at X = 0. Thus,

we have that, with notation of Theorem 5.5, J3(X) has a pole at X = 0 of order p2 if, and

only if, a0,0,3 6= 0.

Proof. By Theorem 1.2, we have that J1 and J2 have zeros at X = 0. In particular, we

have that a0,0,k = 0 for k ∈ {0, 1, 2}. (See Proposition 9.4 from [Fin11b].) Thus, every

entry of the vectors H1 and H2 when evaluated at (X,J1, J2, X
p, Jp1 , J

p
2 ) are divisible by

X. Clearly, also h evaluated at (X, J1, J2, X
p, Jp1 , J

p
2 ) is divisible by X. Thus, this must be

the case also for all η1(H2), η2(H1), and η1(h, η1(H1)), and hence for g3. �

Thus, we need to show that if p ≡ 5 (mod 6), then a0,0,3 6= 0, i.e., vp(a0,0) = 3. It turns

out that this is related to Conjecture 9.10 of [Fin11b], which is equivalent to the second

item of Conjecture 9.3 in the same reference. More precisely, these conjectures state the

following:

Theorem 6.2. Let p ≥ 5. We have that J2(X) has a zero of order (exactly) sp, where

s = (2 b(p− 1)/6c+ 1), at X = 0, or equivalently, that vp(as+1,0) = 2.

The equivalence of the two statements in the theorem above is proved in [Fin11b]. Before

we can explicitly show the connection between Theorems 1.4 and 6.2, we need a little more

notation.

Let Ψp(X,Y ) be as in [Fin11b], i.e., Ψp(X,Y ) is the polynomial proposed by Atkin such

that Ψp(j
1/3, (j′)1/3) = 0 if the elliptic curves associated to j and j′ have an isogeny of

degree p. (See, for instance, [Elk98].) This polynomial also satisfies:

Φp(X
3, Y 3) = Ψp(X,Y )Ψp(X,ωY )Ψp(X,ω

2Y ), (6.1)
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where ω
def
= e2πi/3. (This is Eq. (23) of [Elk98].) This clearly implies that

Φp(X
3, 0) = (Ψp(X, 0))3 (6.2)

and, by Kronecker’s relation,

Ψp(X, 0) ≡ Xp+1 (mod p) (6.3)

(as Φp(X, 0) ≡ Xp+1 (mod p)). Let’s write

Φp(X, 0) =

p+1∑
i=0

aiX
i and Ψp(X, 0) =

p+1∑
i=0

biX
i.

(So, ai = ai,0.) Then, Eq. (6.3) implies that p | bi for i ∈ {0, . . . , p} and p - bp+1. Thus, by

Eq. (6.2), we have that vp(ai,0) ≥ 3 for all i < (p+ 1)/3.

Proposition 6.3. Let p ≥ 5 and

i0
def
=

2, if p ≡ 1 (mod 6),

0, if p ≡ 5 (mod 6).

Then, with the notation above, we have that the following are equivalent:

(1) vp(ai0) = 3;

(2) vp(bi0) = 1;

(3) vp(as+1) = 2, where s
def
= (2 b(p− 1)/6c+ 1).

Proof. We have that if p ≡ 1 (mod 6), then a0 = a1 = 0. (See, for instance, Proposition 9.4

from [Fin11b].) Thus, by Eq. (6.2), we have also that b0 = b1 = 0.

Then, by Eq. (6.2) again, we have in general that ai0 = b3
i0 , and hence vp(ai0) = 3 if,

and only if, vp(bi0) = 1.

Observe now that 3(s+ 1) = p+ 1 + 2i0. So, the coefficient on Xp+1+2i0 of the left hand

side of Eq. (6.2) is as+1, while on the left hand side is
∑

i+j+k=p+1+2i0
bi bj bk. In other

words,

as+1 = 3b2
i0bp+1 +

∑
i+j+k=p+1+2i0

i,j,k 6=p+1

bi bj bk.

Thus, by our remarks above on the valuations of the bi’s, we have that vp(as+1) = 2 if, and

only if, vp(bi0) = 1. �

The next proposition then proves Theorems 1.4 and 6.2.

Proposition 6.4. With the previous notation (and still p ≥ 5), we have that vp(bi0) = 1,

and hence vp(as+1,0) = 2 and vp(ai0,0) = 3.
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Proof. As observed in [Fin10], we have that J1 is the reduction modulo p of

− Φp(X,X
p)

p(Xp2 −X)
= − 1

Xp2 −X

[
p−1∑
i=0

ai,0
p
Xi +

Xp

p

∑′
ai,jX

i+jp−p

]
,

where
∑′ is a sum over (i, j) such that either j 6= 0 or i ≥ p. Moreover, by Theorem 3.2

from this reference, we have that J1 has a zero of order exactly r
def
= b(2p+ 1)/3c at X = 0.

Therefore, vp(ai,0) ≥ 2, for i ∈ {0, . . . , r}, and vp(ar+1,0) = 1. Using the notation above,

the coefficient of 3r+ 3 = 2p+ 2 + i0 in the left hand side of Eq. (6.2) is ar+1, while on the

right hand side is ∑
i+j+k=2p+2+i0

bi bj bk = 3bi0b
2
p+1 +

∑∗
bi bj bk,

where
∑∗ is the sum over (i, j, k) such that i+ j+ k = 2p+ 2 + i0 and at most one of them

is equal to (p + 1). Since p | bi for i ∈ {0, . . . , p} and p - bp+1, as observed above, we have

that p2 |
∑∗ bi bj bk, and since vp(ar+1) = 1, we must have that vp(bi0) = 1. �

7. Refinements on the Formulas for J2 and J3

With the results from the previous sections, we are able to give more precise descriptions

of J2 and J3.

We need some notation. Let

Sp(X)
def
=

ssp(X)

Xδ(X − 1728)ε
,

where

ssp(X)
def
=

∏
j supersing.

(X − j)

is the supersingular polynomial (as in, for instance, [Fin09]),

δ
def
=

0, if p ≡ 1 (mod 6);

1, if p ≡ 5 (mod 6);
and ε

def
=

0, if p ≡ 1 (mod 4);

1, if p ≡ 3 (mod 4).

Hence, Sp(X) ∈ Fp[X], and Sp(0), Sp(1728) 6= 0. (See, for instance, [Fin09].) Also, let

ι =

1, if p 6= 31;

2, if p = 31.

With this notation, [Fin10] (heavily relying on results from [KZ98] and [dS94]) gives a very

precise description of J1:
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Theorem 7.1. Let p ≥ 5 and

J1(X) = F1(X)/G1(X), with F1, G1 ∈ Fp[X] and (F1, G1) = 1.

Then,

(1) degF1 − degG1 = p− ι.
(2) F1 (and hence J1) has a zero at 0 of order (exactly) r

def
= b(2p+ 1)/3c.

(3) Assuming G1 is monic, we have G1(X) = Sp(X).

(4) degF1 = p− ι+Sp(X). (Note that degSp(X) = b(p− 1)/4c− d(p− 1)/6e. See, for

instance, [Fin09].)

Now we can give the corresponding result for J2:

Theorem 7.2. Let p ≥ 5 and

J2(X) = F2(X)/G2(X), with F2, G2 ∈ Fp[X] and (F2, G2) = 1.

Then,

(1) degF2 − degG2 = p2 − ι.
(2) F2 (and hence J2) has a zero at 0 of order (exactly) sp, where s

def
= (2 b(p− 1)/6c+1).

(3) Assuming G2 is monic, we have G2(X) = (X − 1728)εpSp(X)2p+1.

(4) degF2 = p2 − ι+ (2p+ 1) degSp(X) + pε.

Proof. Most of these properties are given by Theorem 9.6 from [Fin10]. The missing ones

are given by Theorem 6.2 above. �

We will now deal with J3, although we will not be able to be as precise as Theorems 7.1

and 7.2 above. To deal with g3 from Eq. (5.4), we need the following lemma:

Lemma 7.3. Let K be a field of rational functions over k and v be a valuation on K such

that v(a) = 0 for all a ∈ k×. Let (α1, . . . , αn) be a vector with coefficients in K, and assume

that min{v(αi) : i ∈ {1, . . . , n}} = v0. Then, v(ηk(α1, . . . , αn)) ≥ pkv0.

Proof. By a simple induction, we see that ηk(X1, . . . , Xn) is a homogeneous polynomial

(with coefficients in Z) of degree pk. The lemma then immediately follows. �

Theorem 7.4. Let p ≥ 5 and

J3(X) = F3(X)/G3(X), with F3, G3 ∈ Fp[X] and (F3, G3) = 1.

Then,

(1) degF3 − degG3 = p3 − ι.
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(2) F3 (and hence J3) does not have a zero at X = 0 unless p ≡ 1 (mod 6), but in this

case it has a zero at 0 of order (exactly) p2.

(3) Assuming G3 is monic, we have G3(X) = Xδp2(X − 1728)εiSp(X)3p2+2p for some

i ∈ {0, . . . , 2p2}.
(4) With i as above, degF3 = (p3 − ι) + δp2 + εi+ (3p2 + 2p) deg(Sp).

Proof. This theorem follows directly from Eq. (5.4) and Lemma 7.3.

For the first item, we have that degF3 − degG3 is the order of pole at infinity of J3.

By Theorems 7.1 and 7.2, we have that J1 and J2 have poles of order p − ι and p2 − ι,
respectively. Also, as seen [Fin10], we have that

deg

∑
i,j

bi,j,1X
ip+jp2

 = p3 + p2 − p and deg

∑
i,j

ci,j,1X
ip+jp2

 ≤ p3.

In a similar way, we have

deg

∑
i,j

bi,j,1X
ip2+jp3

 = p4 + p3 − p2, deg

∑
i,j

ci,j,1X
ip2+jp3

 ≤ p4,

deg

∑
i,j

bi,j,2X
ip2+jp3

 ≤ p4 + p3 − p2, deg

∑
i,j

di,j,1X
ip2+jp3

 ≤ p4 + p3 − 2p2,

deg

∑
i,j

ei,j,1X
ip2+jp3

 ≤ p4 − p2, deg

∑
i,j

fi,j,1X
ip2+jp3

 ≤ p4 − p3.

Now, applying Lemma 7.3 with v as the order of zero at infinity to the definition of g3 gives

that g3(X, . . . , Jp2 )1/p has a pole of order at most p4 + p3 − p. Comparing with the order of

poles of the other terms we obtain the desired result.

The first observation of the second item is an immediate consequence of Theorem 1.4.

Now, in case a0,0,3 = 0, i.e., p ≡ 1 (mod 6), we need to analyze the orders of zeros at 0 of

the terms in Eq. (5.4).

So, suppose that p ≡ 1 (mod 6) and let v0 denote again the order of zero at X = 0. Then,

from Theorems 7.1 and 7.2, we get v0(J1) = r and v0(J2) = sp, where r
def
= b(2p+ 1)/3c

and s
def
= (2 b(p− 1)/6c+ 1). This is in fact a consequence of Proposition 9.4 from [Fin11b],

which states that a0,0 = a1,0 = 0 (if p ≡ 1 (mod 6)), ai,0 ≡ 0 (mod p2) for i ∈ {0, . . . , r},
and ai,0 ≡ 0 (mod p3) for i ∈ {0, . . . , s}. Since in this case r ≥ 5 and s ≥ 3, this implies

that a0,0,n = a1,0,n = 0 for all n, and that a2,0,2, b0,0,1, b1,0,1, b0,0,2, b1,0,2, d0,0,1 are all equal

to zero.
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So, all terms inside the brackets of Eq. (5.4), except possibly g3, has order at zero at

least 2p2. Among those, we see that only
∑
ai,j,3X

ip3+jp3 has order exactly 2p2 (by Propo-

sition 6.4).

We also have v0(g3(X, J1, J2, X
p, Jp1 , J

p
2 )1/p) > 2p2, again by using its definition and

Lemma 7.3, which finishes the proof of the second item.

For the third item, we need to find the order of poles at X = 0 for all j0 6∈ kord, as no

ordinary value can give a pole. If 0 6∈ kord, we have seen J3 has a pole of order p2 at X = 0.

For j0 6∈ k
ord and j0 6= 0, 1728, i.e., for the zeros of Sp, we have that the term inside

the brackets of Eq. (5.4) with highest order of pole is Jp1J
p
2 , having order of pole equal to

2p2 + 2p. This includes the pole of g3(X,J1, J2, X
p, Jp1 , J

p
2 )1/p, which, by Lemma 7.3, is at

most 2p2+p. Hence, J3 must have a pole of order 3p3+2p at those values, as Sp | (Xp2−X).

Finally, for j0 = 1728, if ε 6= 0, then only J2 can introduce poles, and thus the pole inside

the bracket of Eq. (5.4) is of order at most p2 (again using Lemma 7.3), giving the desired

bound.

Finally, the last item is a trivial consequence of first and the third.

�
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