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Abstract. In this paper we analyze liftings of hyperelliptic curves over perfect fields in

characteristic 2 to curves over rings of Witt vectors. This theory can be applied to construct

error-correcting codes, and lifts of points with minimal degrees are likely to yield the best

codes, and these are the main focus of the paper. We find upper and lower bounds for

their degrees, give conditions to achieve the lower bounds and analyze the existence of lifts

of the Frobenius. Finally, we exhibit explicit computations for genus 2 and show codes

obtained using this theory.

1. Introduction

In this paper we analyze liftings of hyperelliptic curves over perfect fields of characteristic

2 to curves over rings of Witt vectors (characteristic 0). As we shall discuss later, these

liftings can be used to construct error-correcting codes, and we will focus on particular

kinds of liftings that are likely to yield good codes. For reasons that will become quite clear

later on, we shall refer to those particular liftings as minimal degree liftings.

The case of characteristic p > 2 was dealt with in [Fin04], and we shall prove here

similar results for p = 2. We observe that for concrete applications to coding theory, this

case is especially important, since we can obtain binary codes, which can be effectively

implemented.

As with the case p > 2, these minimal degree liftings are also of independent interest,

and although we shall keep their applications to coding theory in mind, we will not restrict

ourselves only to results that are relevant to this particular aspect. We shall also study, for

instance, liftings of the Frobenius and the relations of minimal degree liftings with canonical

liftings.

This paper is organized as follows: in section 2 we give a brief introduction to algebraic

geometric codes over rings, which was first introduced by Walker in [Wal99]. Our goal in

this session is to only give a rough idea of how such codes are obtained and to motivate the

introduction of minimal degree liftings.
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In section 3 we introduce some definitions and notation that will be used throughout this

paper and in section 4 we give a precise definition of minimal degree liftings.

In section 5 we discuss liftings of the Frobenius and define the notion of a lift of the

Frobenius associated to a lift of points.

With the background established by the previous sections, we are able to state in section

6 the main results of this paper, while leaving the proofs to the later sections.

In section 7 we prove some technical results about Witt vectors and valuations which are

then used in the proofs of the main theorems.

Sections 8 and 9 contain the proofs of the upper and lower bounds, respectively, for the

degrees of the minimal degree liftings, while section 10 has the proofs of the statements

about achieving degrees exactly equal to the lower bounds.

Section 11 contains the proofs of the main results about lifting the Frobenius map to char-

acteristic zero. In particular, it proves that minimal degree liftings satisfying the established

lower bounds always have a lift of the Frobenius modulo 8 associated to the corresponding

lift of points.

In section 12, we exhibit explicit examples of lifts (modulo 16) of hyperelliptic curves of

genus 2 whose degrees are equal to the lower bounds.

Finally, section 13 contains examples of error-correcting codes.

2. Algebraic Geometric Codes over Rings

In this section we follow sections 2 and 3 of [VW00], adapting the notation and some

results to the particular cases in which we are interested here.

Let k be a finite field of characteristic p (not necessarily equal to 2) and Wl(k) be the

ring of Witt vectors of length l over k. Also, let C/Wl(k) be a projective curve with good

reduction modulo p, C/k be its reduction modulo p, P
def= {P 1, . . . ,P n} be a set of Wl(k)-

rational points of C with distinct reductions modulo p, say {P1, . . . , Pn}, D be a Cartier

divisor of C such that no P i is in the support of D, and L
def= L(D) be the sheaf associated

to D (as in section II.6 of [Har77]). Observe that one can think of L as a set of functions

on C which are regular on the support of D.

Definition 2.1. Let C, P and L be as above. We define the algebraic geometric code over

Wl(k) associated to C, P and L, denoted by CWl(k)(C,P,L), as

CWl(k)(C,P,L) def= {(f(P 1), . . . , (f(P n)) : f ∈ L} ⊂ (Wl(k))n.

The next theorem summarizes some of the main results of [Wal99]:

Theorem 2.2 (Walker). Let C, P
def= {P 1, . . . ,P n}, D, L and C def= CWl(k)(C,P,L) be as

above and let g denote the genus of the curve C. If (2g−2) < degD < n, then C is a linear
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code over Wl(k) which is free as a Wl(k)-module. Moreover, C has rank degD+ 1− g and

minimum Hamming distance at least n− degD.

We are particularly interested in codes over Z/plZ, where p is a prime. If k = Fp, the

field of p elements, then Wl(k) ∼= Z/plZ, and the algebraic geometric codes above are then

codes over Z/plZ. On the other hand, if k is a finite field of characteristic p, but k 6= Fp,

one can apply the trace tr : Wl(k) → Wl(Fp) to each coordinate of all codewords to obtain

codes over Z/plZ
When p = 2 we can obtain non-linear binary codes from codes over Z/2lZ by using the

generalized Gray map, defined by Carlet in [Car98], which is a map G : (Z/2lZ) → F2l−1

2

such that the Hamming weight of G(x − y) is equal to the Hamming distance between

G(x) and G(y), i.e., G is distance preserving. The binary codes are obtained by applying

G coordinatewise to the codewords of the Z/2lZ-codes.

Since we are mainly interested in these binary codes, whenever l = 2 (and p = 2) the Lee

weight for the codes over Z/4Z is of interest, instead of the the Hamming weight, since in

this case the Lee weight of a codeword over Z/4Z is equal to the Hamming weight of the

image of this codeword under the generalized Gray map applied coordinatewise. (Observe

that for l = 2, G is equal to the original Gray map, defined by G(0) = (0, 0), G(1) = (0, 1),

G(2) = (1, 1) and G(3) = (1, 0).)

A computation (see [VW00]) shows that if ~x = (x1, . . . , xn) is a codeword of length n

over Z/4Z, then the Lee weight of ~x, denoted by wL(~x), satisfies

wL(~x) ≥ n−

∣∣∣∣∣∣
n∑

j=1

e2πixj/4

∣∣∣∣∣∣ . (2.1)

Hence, to find lower bounds to the minimum Lee weight of a code over Z/4Z, it suffices

to find an upper bound for the exponential sum above, and thus, in the case of algebraic

geometric codes (with l = 2), where the codewords are of the form (tr(f(P 1), . . . , tr(f(P n)),

with f ∈ L and P = {P 1, . . . ,P n}, we need to find upper bounds for the absolute value of

the exponential sums

Sf
def=

n∑
j=1

e2πi tr(f(P j)/4,

for f ∈ L.

In fact, more generally, if pl 6= 4, one can use Euclidean weights instead of the Lee weight:

given x ∈ Z/plZ, the Euclidean weight of x is given by

wE(x) def=

√
2− 2 cos

(
2πx
pl

)
,
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and if ~x = (x1, . . . , xn), then

w2
E(~x) def=

n∑
j=1

w2
E(xj).

When pl = 4, ones has that wL(x) = 1/2w2
E(x). But, in general, we have that

w2
E(~x) ≥ 2n− 2

∣∣∣∣∣∣
n∑

j=1

e2πixj/pl

∣∣∣∣∣∣ ,
and if ~x is a codeword of the form (tr(f(P 1), . . . , tr(f(P n)), as above, but with arbitrary

p and l, then to find a lower bound to the Euclidean weight of the code, it suffices to find

an upper bound for the absolute value of

Sf
def=

n∑
j=1

e2πi tr(f(P j)/pl
, (2.2)

for f ∈ L.

Let then k be a finite field of characteristic p, C/k and C/Wl(k) be curves as before and

U and U be open subsets of C and C, respectively, such that U is the reduction modulo

p of U . Also, let ν be a lift of points on U , i.e., a map ν : U(k̄) → U(Wl(k̄)) that is a

section of the reduction modulo p. So, if ν(P ) = P and f is a function regular in P , then

f(P ) = f ◦ ν(P ), and f ◦ ν = (f0, f1, . . . , fl−1), where each fi ∈ k(C), for i = 0, . . . , l − 1,

and k(C) denotes the function field of C. Since f is regular at P , all the fi’s are regular at

P .

So, fix a function f and let

P = {P 1, . . . ,P n} = {ν(P ) : P ∈ U(k) and f is regular at ν(P )}. (2.3)

In this situation, Voloch and Walker found an upper bound for the exponential sum (2.2),

more precisely, Theorem 3.1 of [VW00] states:

Theorem 2.3 (Voloch-Walker). Let k = Fq be the field of q elements with characteristic p,

f be a function on the curve C/Wl(k) and P be as in equation (2.3). Let also {Q1, . . . , Qs}
be the set of poles (in C(k̄)) of the coordinates of f ◦ ν, and vQi be the valuation of k(C)

given by the order of vanishing at Qi. Finally, let g be the genus of the curve C and assume

that f ◦ ν is not of the form σ(g) − g + c for any g ∈ Wl(k(C)) and c ∈ Wl(k), where

σ(g0, . . . , gl)
def= (gp

0 , . . . , g
p
l ). Then

|Sf | ≤

2g − 1 +
s∑

j=1

max
0≤i≤(l−1)

{−pl−1−i vQj (fi)} [k(Qj) : k]

 q1/2, (2.4)

where k(Qj) is the minimal field of definition of Qj.
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Hence to have a larger bound for the Euclidean weight of the algebraic geometric codes

over Z/plZ, and hence larger Lee weight when pl = 4, we need to have a smaller value for

|Sf |, and thus we want the coordinate functions of f ◦ ν to have small order of poles at the

Qi’s, and in order to have the best possible bounds, we look for lifts of points ν that yield

minimal order of poles. This will be the motivation for our definition of minimal degree

liftings.

3. Conventions and Definitions

Before we state the main results, we need to establish some notation and review a few

previous results.

Throughout this paper, k will be a perfect field of characteristic 2. (For the applications

to coding theory k will be a finite field, but the theoretical results hold in the more general

case of perfect fields.) Also let

C/k : y2
0 + g(x0) y0 = f(x0), (3.1)

be a (non-singular and projective) hyperelliptic curve over k, where f(x0) is a monic polyno-

mial of odd degree (as a polynomial in x0), which we shall denote by d, and g(x0) has degree

(as a polynomial in x0) less than or equal to (d− 1)/2. Therefore, C has genus (d− 1)/2,

there is only one point at infinity, which we shall denote by P∞, and the polynomials g(x0)

and (f ′(x0) + g′(x0) y0) have no common zeros on C (since C is non-singular).

Let ω denote the holomorphic differential

ω
def=

dy0

f ′(x0) + g′(x0) y0
=

dx0

g(x0)
(3.2)

which has no zeros at the affine part of C and a zero of order (2d− 2)− (d+ 1) = (d− 3)

at P∞.

Also observe that, by the Riemann-Roch Theorem, or more precisely, by [Sil85] Corollary

II.5.5(b), every hyperelliptic curve over k of genus (d− 1)/2, for any odd number d, can be

put in that form.

Also, let

C/W(k) : y2 + g(x) y = f(x) (3.3)

be a hyperelliptic curve over the ring of Witt vectors W(k), where f is a monic polynomial

of degree d (i.e., same degree as f), the degree of g is less than or equal to (d − 1)/2,

and such that the reductions of f and g modulo 2 are f and g respectively (i.e, C is the

reduction modulo 2 of C).

Note that since C is non-singular, C is also non-singular, and so 2y + g(x) and f ′(x)−
g′(x) y have no common zeros on C. And, similarly as done with C, let P∞ denote the
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point at infinity of C and let ω denote the holomorphic differential

ω
def=

dy

f ′(x)− g′(x) y
=

dx

2y + g(x)
.

We shall often identify C with its Greenberg transform G(C), which is an infinite di-

mensional scheme over k, defined in the following manner: writing x = (x0, x1, . . . ) and

y = (y0, y1, . . . ), where the xi’s and yi’s are variables, one can expand both sides of equa-

tion (3.3) using the addition and multiplication of Witt vectors. The equations (on the xi’s

and yi’s) obtained by comparing the coordinates of the Witt vectors in both sides of this

expansion are the equations that define G(C).

As mentioned in section 2, in our construction of codes we shall use lifts of points between

open sets of C and C. For us these open sets will always be the affine parts of C and C.

So, let U and U denote the affine parts of C and C respectively. We then define:

Definition 3.1. A lift of points from C/k to C/W(k) is a regular map

ν : U(k̄) → U(W(k̄)) ≈ G(U)(k̄)

which is a section of the reduction modulo 2. (Hence, in this paper, we consider lifts of

points between the affine parts only.)

In terms of the Greenberg transform, a lift of points

ν : U(k̄) → U(W(k̄))

can be written as

ν(x0, y0) = (x0, F1(x0, y0), F2(x0, y0), . . . , y0, G1(x0, y0), G2(x0, y0), . . . ), (3.4)

where, since this map cannot have any poles in the affine part of C, we have in fact that

Fi, Gi ∈ k[x0, y0]. Also, we will write F0
def= x0 and G0

def= y0.

Remember that we are after lifts ν that will yield minimal order of poles for the coor-

dinates of compositions of ν with functions in C. In our applications our divisor D (as in

section 2) will be a positive multiple of P∞, and hence the functions in L(D) are polyno-

mials in W(k)[x,y]. Therefore, to have the best lower bound for the minimum Euclidean

(or Lee weight, if pl = 4), we need to have lifts ν such that the coordinate functions of

x ◦ ν = (x0, F1, F2, . . . )

and

y ◦ ν = (y0, G1, G2, . . . )

have minimal order of poles at P∞.
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Observe that in both [Fin02] and [Fin04] we referred to “degrees” as degrees as polyno-

mials in x0. To say that the Fi’s and Gi’s have minimal degrees as polynomials is the same

as to say that these functions have minimal order of poles at P∞. This was convenient in

those papers since we mostly dealt with polynomials in a single variable, namely with k[x0].

The case of characteristic 2 is rather different and we will have to deal with polynomials in

two variables, and so we will adopt a different convention here.

Definition 3.2. Let h be a function in the k(C). Then the degree of h, denoted by deg h,

is defined as the number of poles of h counted with multiplicity. (Note that this is the same

as to define deg h def= [k(C) : k(h)], by [Sil85] Proposition II.2.6(a).)

Hence, deg x0 = 2 and deg y0 = d. Whenever we need to refer to the degree of some

function as a polynomial, we shall explicitly say so.

So our goal is to obtain lifts of points ν whose coordinate functions Fi’s and Gi’s have

minimal degrees.

4. Minimal Degree Liftings

As in [Fin04], we have a few different choices when dealing with minimal degree liftings.

First, one can choose which coordinate is to have its degrees minimized, i.e., one can either

minimize the degrees of the Fi’s (as in equation (3.4)) or of the Gi’s. In general, one cannot

minimize both at the same time. Secondly, one can either assume that the curves C and

C are fixed a priori, and then find lifts of points between (the affine parts of) those curves

with minimal possible degrees (for the chosen coordinate), or we can assume that only C is

fixed, and then find a lift C of C which has a lift of points with minimal degrees (for the

chosen coordinate) among all lifts of points from C to any other lift C̃.

We will make these notions precise in the following two definitions below.

Definition 4.1. Let C and C be curves given by equations (3.1) and (3.3) respectively.

A minimal degree lifting from C to C/W2(k) with respect to y (resp., x) is a lift of points

ν : U(k̄) → U(W2(k̄)), with

ν(x0, y0) = ((x0, F1), (y0, G1)),

where degG1 (resp., degF1) is minimal.

Inductively, a minimal degree lifting from C to C/Wn+1(k) with respect to y (resp., x)

is a lift of points ν : U(k̄) → U(Wn+1(k̄)), with

ν(x0, y0) = ((x0, F1, . . . , Fn), (y0, G1, . . . Gn)),

where the reduction modulo 2n is a minimal degree lifting from C to C/Wn(k), and degGn

(resp., degFn) is minimal.
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Definition 4.2. Let C be a hyperelliptic curve given by (3.1). An absolute minimal degree

curve modulo 4 over C with respect to y is a curve C/W2(k) (given by (3.3)) which reduces

to C modulo 2, and which satisfies the following property. Let

ν(x0, y0) = ((x0, F1), (y0, G1))

be a minimal degree lifting from C to C with respect to y, and let C̃/W2(k) be any curve

that reduces to C modulo 2. Then for any minimal degree lifting with respect to y

ν̃(x0, y0) = ((x0, F̃1), (y0, G̃1))

from C to C̃, we have deg G̃1 ≥ degG1.

Inductively, an absolute minimal degree curve modulo 2n+1 over C with respect to y is a

curve C/Wn+1(k) whose reduction modulo 2n is an absolute minimal degree curve modulo

2n over C with respect to y, satisfying the following property. Let

ν(x0, y0) = ((x0, F1, . . . , Fn−1, Fn), (y0, G1, . . . , Gn−1, Gn))

be a minimal degree lifting with respect to y from C to C, and let C̃/Wn+1(k) be any

curve whose reduction modulo 2n is equal to the reduction modulo 2n of C. Then, for a

minimal degree lifting with respect to y

ν̃(x0, y0) = ((x0, F1, . . . , Fn−1, F̃n), (y0, G1, . . . , Gn−1, G̃n))

from C to C̃, we have deg G̃n ≥ degGn. In this case we call the minimal degree lift ν from

C to C an absolute minimal degree lift (of points) with respect to y (modulo 2n+1).

We also have the analogous definitions with respect to x, rather than y.

In contrast with the case of p > 2, where liftings with respect to x and y had very similar

properties, here these two liftings are quite different. One will notice that the lifting with

respect to y in this case has properties very similar to the properties we have when p > 2,

but for the x coordinates, the cases p = 2 and p > 2 are quite different.

One of the author’s first motivations to deal with minimal degree liftings was to try to

lower the degrees of the elliptic Teichmüller lift, which is a special lift of points in the case

of ordinary elliptic curves (i.e., genus 1 or d = 3), which we shall now briefly describe.

Let k be a perfect field of characteristic p > 0. (We do not assume that p = 2 for

this part.) We say that an elliptic curve E/k is ordinary if the p-torsion subgroup of E

is isomorphic to Z/pZ. Associated to an ordinary elliptic curve E, there exists a unique

(up to isomorphisms) elliptic curve E over W(k), called the canonical lifting of E, and a

map τ : E(k̄) → E(W(k̄)) (not only between the affine parts, but for the whole projective

curves), called the elliptic Teichmüller lift, characterized by the following properties:

(1) the reduction modulo p of E is E;
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(2) if σ denotes the Frobenius of both k and W(k), then the canonical lifting of Eσ (the

elliptic curve obtained by applying σ to the coefficients of the equation that defines

E) is Eσ;

(3) τ is an injective group homomorphism and a section of the reduction modulo p;

(4) let φ : E → Eσ denote the p-th power Frobenius; then there exists a map φ : E →
Eσ, such that the diagram

E(W(k̄))
φ−−−−→ Eσ(W(k̄))

τ

x xτσ

E(k̄)
φ−−−−→ Eσ(k̄)

commutes. (In other words, there exists a lift of the Frobenius.)

This concept of canonical lifting of elliptic curves was first introduced by Deuring in

[Deu41] and then generalized to Abelian varieties by Serre and Tate (see [LST64]). Apart

from being of independent interest, this theory has been used in many interesting appli-

cations, such as counting rational points in ordinary elliptic curves, as in Satoh’s [Sat00],

and counting torsion points of curves of genus g ≥ 2, as in Poonen’s [Poo01]. Also, one can

clearly use ordinary elliptic curves and the elliptic Teichmüller lift in the construction of

codes described in section 2, and, in fact, the codes constructed by Voloch and Walker in

[VW00] were obtained this way.

In order to improve the bounds for the codes that would be obtained using the Teichmüller

lift

τ = ((x0, F1, F2, . . . ), (y0, G1, G2, . . . ))

we would need to reduce the degrees of the Fi’s and Gi’s. Proposition 4.2 in [VW00] states

that the degrees of F1 and G1 cannot be improved. On the other hand, the degrees of the

Fi’s and Gi’s for i ≥ 2 can almost always be improved. If p ≥ 3, then one can choose

to either reduce the degrees of the Fi’s without increasing the degrees of the Gi’s, or the

other way around. On the other hand, for p = 2, we can still reduce the degrees of the

Gi’s without increasing the degrees of the Fi’s, but we cannot reduce the degrees of the

Fi’s without increasing the degrees of the Gi’s. In fact, in this case, the degrees of the

Gi’s increase considerably. Hence, it seemed more natural to first consider minimal degree

liftings in characteristic 2 with respect to y instead of x.

5. Lifts of the Frobenius

In this section we briefly discuss lifts of the Frobenius. We probably should start by

observing that the question of whether or not such lift exists is of purely theoretical interest
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and has no application to the explicitly construction of codes or apparent relation with how

good the obtained codes are.

Let C be a hyperelliptic curve given by equation (3.1). Let, as before, σ denote the

Frobenius of k (now of characteristic 2), and Cσ be the curve given by the zeros of the

equation defined by applying σ to the coefficients of the equation that defines C. Then, the

relative Frobenius is a morphism

φ : C → Cσ

defined by φ(x0, y0)
def= (x2

0, y
2
0).

Certainly in characteristic zero one does not have a naturally defined analogue of the

Frobenius map. On the other hand, we can look for liftings of C for which we have a lift of

the Frobenius. More precisely, if σ denote also the Frobenius in W(k), can one find a curve

C, given by an equation as in (3.3) for which there is a morphism

φ : C → Cσ,

such that the reduction modulo 2 gives the Frobenius of C (as in the case of ordinary elliptic

curves)? In general, the answer is no. Raynaud showed in [Ray83] that curves of genus

greater than one have no lift of the Frobenius. Moreover, only ordinary elliptic curves have

lifts of the Frobenius. On the other hand, for (smooth) affine curves over Wn(k) with good

reduction, there is always a lifting of the Frobenius. (Although not entirely immediate, a

proof of this result in the case of plane curves can be obtained by using Lemma 8.1 and a

slightly modified version of Lemma 11.1.)

As one can see from [Bui96] and [Fin04], lifts of points and lifts of the Frobenius are

somewhat related. (For example, Theorem 4.1 in [Fin04] states that having a lift of points

modulo pn+1 gives a lift of the n-th power of the Frobenius modulo pn+1.) To make this

connection between lifts of points and lifts of the Frobenius more precise, we introduce the

following definition:

Definition 5.1. Let C/k and C/Wn(k) be curves given by equations (3.1) and (3.3) re-

spectively and ν : U(k̄) → U(W(k̄)) be a lift of points between the affine parts. Let also

φ : C → Cσ denote the Frobenius map in characteristic p. We say that φ : U → Uσ is a

lift of the Frobenius associated to ν if it is a map that makes the diagram

U(Wn(k̄))
φ−−−−→ Uσ(Wn(k̄))

ν

x xνσ

U(k̄)
φ−−−−→ Uσ(k̄)

commute.
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Note that a lift of the Frobenius associated to a lift of points is, in principle, only a map

between the affine parts of C and Cσ. Clearly, in the case of ordinary elliptic curves, the

lift of the Frobenius associated to the elliptic Teichmüller lift can be extended to the whole

curve.

So, one can ask about the existence of lifts of the Frobenius that are associated to

particular lifts of points. For instance, for (projective) curves of genus greater than one in

characteristic p > 2, Mochizuki showed in [Moc96] that (in most cases) there is a lift of the

Frobenius in an open subset of the curve associated to a lift of points which has “small”

degrees. In section 12, we show that some special examples of minimal degree liftings (in

characteristic 2) have lifts of the Frobenius associated to them, at least modulo 8. Also, it is

worth noting that in characteristic p > 2 we also often have lifts of the Frobenius associated

to minimal degree liftings, and for p = 3, the Mochizuki liftings are in fact minimal degree

liftings. (See [Fin04].)

6. Statements of Main Results

In this section we state the main results of this paper, while leaving the corresponding

proofs for the later sections.

This first proposition, proved in section 8, gives upper bounds for the minimal degrees

of the lifts of points with respect to y in the most general situation.

Proposition 6.1. Let C and C be as in equations (3.1) and (3.3) respectively. Then, the

minimal degree lifting from C to C with respect to y,

ν(x0, y0) = ((x0, F1, F2, . . . ), (y0, G1, G2, . . . )),

satisfies

degG1 ≤ 4(d− 1) + (d− 2),

degF1 ≤ max{4, 2 deg g + (d− 2)},

and for n ≥ 2,

degGn ≤ 2n+1(d− 1) + (d− 2),

degFn ≤ 2n

(
2 +

n 3(d− 2)
2

)
.

The next proposition, also proved in section 8, improves the upper bounds for the degrees

of the Fn’s in Proposition 6.1, by the addition of extra conditions on the degrees of F1 and

G1, which, as we shall soon see in Proposition 6.9, are often satisfied.
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Proposition 6.2. Let C and C be as in equations (3.1) and (3.3) respectively, and assume

that the minimal degree lift of points with respect to y modulo 4 is such that

degG1 ≤ 2
(
d+

5(d− 2)
8

)
,

degF1 ≤ 2
(

2 +
5(d− 2)

8

)
.

Then, the minimal degree lift of points from C to C with respect to y,

ν(x0, y0) = ((x0, F1, F2, . . . ), (y0, G1, G2, . . . )),

satisfies, for n ≥ 2,

degGn ≤ 2n−1(d− 1) + (d− 2),

degFn ≤ 2n

(
2 +

n 5(d− 2)
8

)
.

As mentioned in section 4, if one now tries to minimize the degrees with respect to x,

the degrees in the y coordinate tend to increase considerably.

Although this seems to ruin the possible obtained codes, one should notice that if the

Cartier divisor in question, as in section 2, is of the form D = nP∞, with n < d, then the

functions in L(D) are all powers of x, and hence the Gi’s are irrelevant to the code. Hence,

it does make sense to consider such lifts.

Proposition 6.3. Let C and C be as in equations (3.1) and (3.3) respectively. Then, the

minimal degree lift of points from C to C with respect to x,

ν(x0, y0) = ((x0, F1, F2, . . . ), (y0, G1, G2, . . . )),

satisfies, for n ≥ 1,

degFn ≤ 2n deg g + d− 2,

degGn ≤ 2n(d+ nen),

where

en
def= max

{
0,deg g +

d− 6
2

}
+ (d− deg g)

n∑
j=1

1
j
.

In the same spirit as Proposition 6.2, Proposition 6.4 improves the bounds on the degrees

of the Gn’s in Proposition 6.3 by adding assumptions to the degrees of F1 and G1, which

again will often be satisfied as a consequence of Proposition 6.9.
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Proposition 6.4. Let C and C be as in equations (3.1) and (3.3) respectively, with deg g ≤
(3d+ 2)/4. If the minimal degree lift of points from C to C with respect to x,

ν(x0, y0) = ((x0, F1, F2, . . . ), (y0, G1, G2, . . . )),

is such that

degF1 ≤ d+ 2 and degG1 ≤ 3d− 2,

then, for n ≥ 2,

degFn ≤ 2n deg g + d− 2,

degGn ≤ 2n(d+ nen),

where

en
def=

d− 2
2

− (d− deg g) + (d− deg g)
n∑

j=1

1
j
.

The next theorem gives lower bounds for the degrees of the Gn’s.

Theorem 6.5. Let C and C be as in equations (3.1) and (3.3), and ν, as in equation (3.4),

be a lift of points between U and U , the affine parts of C and C respectively. Assume that

degGi = 2i+1(d− 1)− (d− 2)

for i = 0, . . . , (n− 1). Then,

degGn ≥ 2n+1(d− 1)− (d− 2). (6.1)

Moreover, if the equality holds, then:

(1) the coefficient of x0 in g, say λ, is non-zero;

(2) g′ = λ;

(3) dGn = λ−(2n−1)(f ′ + g′y0)2
n−1 dy0 +

∑n−1
i=0 G

2n−i−1
i dGi.

Thus, the above theorem implies that when trying to minimize the degrees of the Gn’s,

the best one can expect is to obtain degGn = 2n+1(d− 1)− (d− 2) for n ≥ 1.

Theorem 6.5 above is somewhat similar to Theorem 2.4 in [Fin04]: both give lower bounds

for the degrees of lifts of points and a necessary condition on the equation of the curve to

achieve those bounds. (In fact, the ideas behind the proofs are the same.) In the case of

[Fin04], computations show that the obtained condition seems to be also sufficient, at least

for n = 1, 2. The next proposition, proved in section 10, shows that this is not the case

here.
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Proposition 6.6. Let C and C be curves defined by equations (3.1) and (3.3) and

ν(x0, y0) = ((x0, F1), (y0, G1))

be a lift of points between their affine parts such that degG1 = (3d − 2). Then deg g = 2

(i.e., as polynomial in x0, g(x0) has degree one) and F1 ∈ k[x0] with degF1 ≤ 2 (i.e., as

polynomial in x0, F has degree at most one).

Hence, to achieve the lower bound, besides having g′ ∈ k×, it is also necessary to have

deg g = 2. On the other hand, those two conditions do seem to be sufficient, as we shall see

in Theorem 6.13 and in the computation of section 12.

One can also use the same approach used to prove Theorem 6.5 to find lower bounds

for the degrees of the Fn’s. But, in this case, one obtains the trivial bound degFn ≥ 0.

Although the bound itself is useless, the proof again gives us a necessary conditions to have

the equality, and, as we shall see in Proposition 6.8, one can indeed often obtain equality.

Theorem 6.7. Let C and C be as in equations (3.1) and (3.3), and ν, as in equation

(3.4), be a lift of points between U and U , the affine parts of C and C respectively. Then,

if dF1 = 0, then either g = λ or g = λx0, for some λ ∈ k×. In particular, this restriction

on g has to hold if degF1 = 0.

Furthermore, one can prove:

Proposition 6.8. Let C be a curve given by equation (3.1) with g ∈ k×. Then, for any

lifting C of C, there exists a lift of points

ν = ((x0, F1, F2, . . . ), (y0, G1, G2, . . . ))

such that

degFn = 0,

degGn ≤ 2n

d+ n

−1
2

+ d ·
n∑

j=1

1
j

 .

(The proof of Theorem 6.7 is given in section 9, while the proof of Proposition 6.8 is

given in section 10.)

Also, as we shall see in Proposition 6.9 below, if g = x0, one can also obtain degF1 = 0,

but in this case, not always one can have degF2 = 0: for example, as we shall state in

Theorem 6.13, the ordinary elliptic curve y2
0 + x0y0 = x3

0 + a0 has no lift modulo 8 with

degF2 = 0. So, the condition g = λx0 in Theorem 6.7 is not sufficient.

The next proposition, also proved in section 10, shows that if we have g = x0, one can

achieve the lower bounds for both F1 and G1 modulo 4. Observe that, by Theorem 6.7, it
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is not enough to have deg g = 2, even though such a curve is isomorphic to a curve with

g = x0: the degrees of a lift of points depends on the equation of the curve in question, not

on its isomorphism class. On the other hand, having g = λx0, for any λ ∈ k×, instead of

g = x0 does yield same degrees.

Proposition 6.9. Let C be a curve defined by equation (3.1). If g = x0, then there exists

a lifting of C, say C (defined by (3.3)), for which we have a lift of points

ν(x0, y0) = ((x0, F1), (y0, G1))

between the affine parts of C and C with degG1 = (3d − 2) and F1 ∈ k. Hence, C is an

absolute minimal degree curve over C with respect to both x and y, and ν is an absolute

minimal degree lift of points.

It is worth noticing that the proof is actually constructive, giving us a method to obtain

the curve C and lift of points ν (modulo 4), which can then be used in the construction of

the error-correcting codes.

Also note that, with the above proposition, when g = x0 one can use Propositions 6.2

and 6.4 instead of 6.1 and 6.3 to bound the degrees of the later Fi’s and Gi’s.

Observe that, in the case of minimal degree liftings with respect to y, although we have

degF1 = 0 < 2(2 + 5(d − 2)/8) and degG1 = 3d − 2 < 2(d + 5(d − 2)/8), the bounds

from Proposition 6.2 cannot be improved. The reason for that comes from the condition

e ≥ (d − 2)(1 + 1/2r)/r in Lemma 8.2, which is, in fact, the key part of the proof of

Propositions 6.1 and 6.2. Very roughly, the reason for that is that the degrees of G2 and F2

might have to reach the stated upper bounds just to match the degrees of the terms that

do not involve F1 or G1 in the third coordinate of the Greenberg transform.

In the case of minimal degree liftings with respect to x, note that, since we have deg g = 2,

Proposition 6.3 gives, for n ≥ 2,

degGn ≤ 2n

d+ n

d− 2
2

+ (d− 2)
n∑

j=1

1
j

 ,

while Proposition 6.4 gives

degGn ≤ 2n

d+ n

−(d− 2)
2

+ (d− 2)
n∑

j=1

1
j

 ,

The next proposition, proved in section 11, will give a necessary and sufficient condition

for the existence of a lift of the Frobenius (between affine parts of hyperelliptic curves,

as in section 5) associated to a lift of points modulo 8 (for a hyperelliptic curve C given

by equation (3.1)). Note, though, that the existence of a lift modulo 4 is guaranteed by
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Theorem 4.1 in [Fin04]. Before we can give a precise statement, we need the following

definition.

Definition 6.10. Let h(x0, y0) ∈ k[x0, y0] and h(x,y) ∈ W2(k) be the lift of h defined

by applying the Teichmüller lift to the coefficients of h, i.e., if λ is a coefficient of some

monomial of h, then the corresponding monomial of h has coefficient (λ, 0). (We shall refer

to such lift as the Teichmüller lift of the polynomial h.) We define

Ψ(h) def= Ψ(h) def= reduction modulo p of
hσ(xp,yp)− h(x,y)p

p
.

Note that when p = 2, Ψ(h(x0, y0)) is just the sum of all possible products of pairs of

distinct monomials of h.

Proposition 6.11. Let C/k and C/W3(k) be curves given by equations (3.1) and (3.3),

and let

ν = ((x0, F1, F2), (y0, G1, G2))

be a lift of points. There is a lift of the Frobenius between the affine parts associated to ν

if, and only if,

F2 + x2
0 F1 + F 2

1 + Ψ(F1) +
(
∂F1

∂x0

)2
F1 +

(
∂F1

∂y0

)2
G1

and

G2 + y2
0 G1 +G2

1 + Ψ(G1) +
(
∂G1

∂x0

)2
F1 +

(
∂G1

∂y0

)2
G1

are both squares, say P (x0, y0)2 and Q(x0, y0)2, respectively. In this case, the lift of the

Frobenius given by

φ(x,y) = (x2 + 2F 1 + 4P ,y2 + 2G1 + 4Q),

where F 1 and G1 are the Teichmüller lifts of F1 and G1 respectively, and P and Q are lifts

of P and Q, respectively, to W3[x,y].

Observe that Proposition 6.11 is similar to Proposition 2.7 in [Fin04], which deals with

the case p > 2. On the other hand Proposition 6.11 is more general, since here there are

no restrictions on the lift ν as there was in [Fin04]. But, in fact, one could easily make

Proposition 2.7 of [Fin04] more general following the same ideas from the proof of the above

proposition.

The next theorem, also proved in section 11, shows that if a lift has the degrees of either

the Fn’s or the Gn’s satisfying the lower bounds given by Theorems 6.7 and 6.5, then there

is a lift of the Frobenius modulo 8.
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Theorem 6.12. Let C and C be given by equations (3.1) and (3.3) respectively. Let

ν(x0, y0) = (x0, F1, F2, y0, G1, G2)

be a lift of points such that

dF1 = (h g + x0) dx0,

dF2 = (h3 g3 + x3
0) dx0 + F1 dF1,

for some h ∈ k(C). Then there is a lift of the Frobenius (modulo 8) between the affine parts

of C and C associated to ν. In particular, if degFn = 0 or if degGn = 2n+1(d−1)− (d−2)

(i.e., the degrees of either the Fn’s or the Gn’s are equal to the lower bounds) for n = 1, 2,

then there is a lift of the Frobenius modulo 8.

We note that the last sentence of the theorem, at least for the case when degGn =

2n+1(d − 1) − (d − 2), is not totally trivial at this points, but will follow from some later

results.

Finally, it might also be worth mentioning the case of elliptic curves (i.e., d = 3), to

relate minimal degrees liftings and canonical liftings. One has:

Theorem 6.13. Let C be an elliptic curve, i.e., a curve given by equation (3.1) with d = 3.

Then:

(1) C is ordinary if, and only if, deg g = 2.

(2) If C is not ordinary, then there is no lift of points satisfying the lower bounds for

the Gi’s from Theorem 6.5.

(3) If C is ordinary, then, modulo 16, the absolute minimal degree curve over C with

respect to y is the canonical lifting of C (hence it’s unique), the minimal degree lift

of points is also unique and it satisfies the lower bounds of Theorem 6.5. (Hence,

by Theorem 6.12, there is a lift of the Frobenius modulo 8 associated to the lift of

points.)

(4) If C is ordinary, then there is no lift of points with degF2 = 0. But, modulo 16, its

absolute minimal degree curve over C with respect to x is the canonical lifting, and,

although degF2 > 0 and degG2 > 15, there is still a lift of the Frobenius modulo 8

associated to this lift.

So, as in the case of p > 2, it seems that minimal degree curves and canonical liftings are

closely related.

Item 1 of the theorem is a well known fact: see, for instance, section V.4 of [Sil85]. Item

2 is an immediate consequence of Theorem 6.5 (more precisely, the condition g′ ∈ k×) and

item 1.
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Items 3 and 4 can be proved by explicit computations, which are too long to be presented

here, but are perfectly feasible with the use of a computer.

7. Witt Vectors and Valuations

In this section we obtain the results that we shall need to deal with Witt vectors. Al-

though the proofs are rather technical and sometimes tedious, the results are necessary for

the proofs of the main results.

Let p be a prime, and for any non-negative integer n consider

Wn(X0, . . . , Xn) def= Xpn

0 + pXpn−1

1 + · · ·+ pn−1Xp
n−1 + pnXn,

the corresponding Witt polynomial. Then, there exist polynomials

Sn, Pn ∈ Z[X0, . . . , Xn, Y0, . . . , Yn]

satisfying:

Wn(S0, . . . , Sn) = Wn(X0, . . . , Xn) +Wn(Y0, . . . , Yn)

and

Wn(P0, . . . , Pn) = Wn(X0, . . . , Xn) ·Wn(Y0, . . . , Yn).

(See [Ser79].)

Thus, if s = (s0, s1, . . . ) and t = (t0, t1, . . . ) are Witt vectors, we have by definition

s + t
def= (S0(s0, t0), S1(s0, s1, t0, t1), . . . )

and

s · t def= (P0(s0, t0), P1(s0, s1, t0, t1), . . . ).

We may write, to simplify the notation,

Sn(s, t) def= Sn(s0, . . . , sn, t0, . . . , tn)

and

Pn(s, t) def= Pn(s0, . . . , sn, t0, . . . , tn).

Since the entries of our Witt vectors are in characteristic p, we can use the polynomials

S̄n, P̄n ∈ Fp[X0, . . . , Xn, Y0, . . . , Yn], that are the reductions of Sn, Pn modulo p, to give us

the sum and product of Witt vectors.

We now introduced some technical lemmas that we shall need later on.

Lemma 7.1. The monomials
∏
Xai

i

∏
Y

bj

j (disregarding the coefficient) occurring in P̄n

satisfy ∑
ai p

i =
∑

bj p
j = pn and

∑
i ai p

i +
∑

j bj p
j ≤ n pn.

Proof. This is Lemma 2.1 in [Fin02]. �
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Let K be a field of characteristic p > 0 and v : K → R ∪ {∞} be a valuation on K. (In

the applications, K will be the function field of our curve and v = ordP∞ .) Then, for any

positive integer r and positive real number e, we define

Ur(e)
def=
{
s = (s0, s1, . . . ) ∈ W(K)× | v(sn) ≥ pn(v(s0)− ne), for n ≤ r

}
and

U(e) def=
{
s = (s0, s1, . . . ) ∈ W(K)× | v(sn) ≥ pn(v(s0)− ne), ∀n > 0

}
.

(So, U(e) =
⋂

r≥0 Ur(e).) Also, for any v0 ∈ R, let

Mr(v0, e)
def= {s = (s0, s1, . . . ) ∈ W(K) | v(sn) ≥ pn(v0 − ne), for n ≤ r}

and M(v0, e)
def=
⋂

r≥0Mr(v0, e)

We then have the following lemmas:

Lemma 7.2. The sets U(e) and Ur(e) are subgroups of W(K)×.

Proof. This is Lemma 3.1 in [Fin04]. �

Lemma 7.3. Let k be a subfield of K for which every non zero element has valuation zero.

(E.g., Fp or the field of constants in the case where K is a function field of a curve.) Then,

the set Mr(v0, e) is a W(k)-submodule of W(K). In particular, so is M(v0, e).

Proof. We first show that Mr(v0, e) is closed under addition for all non-negative integers r.

Let s = (s0, s1, . . . ), t = (t0, t1, . . . ) ∈Mr(v0, e). Then,

s + t = (S0(s, t), S1(s, t), . . . ),

where Sn ∈ Z[X0, . . . , Xn, Y0, . . . , Yn] is defined recursively by

Sn = (Xn + Yn) +
1
p
(Xp

n−1 + Y p
n−1 − Sp

n−1) + · · ·+ 1
pn

(Xpn

0 + Y pn

0 − Spn

0 ). (7.1)

It is enough to prove that every monomial in Sn, for n = 0, . . . , r, has valuation, when

computed at (s, t), greater than or equal to pn(v0 − ne).

Observe that the valuations of the coefficients of the monomials of Sn are zero, since, in

characteristic p > 0, they are roots of unity. Hence, we shall disregard the coefficients of

the monomials.

We proceed by induction on n. For n = 0, S0(s, t) = s0 + t0, and since v(s0), v(t0) ≥ v0,

the statement clearly holds.

So, assume that, for 0 ≤ m < n ≤ r, the valuations of the monomials of Sm when

evaluated at (s, t) are less than or equal to pm(v0−me) and let
∏
Xai

i

∏
Y

bj

j be a monomial

(with the coefficient dropped) that appears in Sn.



20 LUÍS R. A. FINOTTI

By equation (7.1), this monomial comes from Spn−m

m , or it is either of the form Xpn−i

i or

Y pn−j

j .

The monomials of Spn−m

m are products of pn−m monomials of Sm, and therefore, by the

induction hypothesis, they have valuation, when computed at (s, t), greater or equal to

pn−mpm(v0 −me) ≥ pn(v0 − ne).

If the monomial is eitherXpn−i

i or Y pn−j

j , then the corresponding valuations are pn−iv(si) ≥
pn(v0 − ie) and pn−jv(tj) ≥ pn(v0 − je), respectively. In either case, the monomials have

valuation greater than or equal to pn(v0−ne). Therefore, Mr(v0, e) is closed under addition.

Now let c = (c0, c1, . . . ) ∈ W(k) and s ∈Mr(v0, e). Note that either v(ci) = 0 or ci = 0.

The (n+ 1)-th coordinate of c · s, for 0 ≤ n ≤ r, is given by P̄n(c, s). Let
∏
Xai

i

∏
Y

bj

j

be a monomial (disregarding the coefficient) in P̄n. If ci = 0, for some fixed i for which

ai 6= 0, then

v
(∏

cai
i

∏
s
bj

j

)
= v(0) > pn(v0 − ne).

If ci 6= 0 for all i such that ai 6= 0, then, by Lemma 7.1,

v
(∏

cai
i

∏
s
bj

j

)
=
∑

aiv(ci) +
∑

bjv(sj)

=
∑

bjv(sj) ≥
∑

bjp
j(v0 − je)

≥ pn(v0 − ne).

Therefore, v(P̄n(c, s)) ≥ pn(v0 − ne), and so c · s ∈Mr(v0, e).

�

Lemma 7.4. Let k be a field of characteristic p > 0 and h(x,y) ∈ W(k)[x,y]. If we let

x = (x0, x1, . . . ) and y = (y0, y1, . . . ) and expand h(x,y) as Witt vector (as we do with

Greenberg transforms), then the (n+ 1)-th coordinate of this expansion is of the form

xn

(
∂h

∂x0
(x0, y0)

)pn

+ yn

(
∂h

∂y0
(x0, y0)

)pn

+ . . . ,

where h(x0, y0) is the reduction modulo p of h(x,y) and the omitted terms depend only on

xi and yi, for i = 0, . . . (n− 1).

Proof. The lemma clearly holds for h(x,y) equal to either x, y or a constant (in W(k)).

So, it suffices to show that if the lemma holds for h1 and h2, then it must also hold for

their sum and product.

We first show that it holds for h1 + h2: just observed that the (n + 1)-th coordinate is

given by the polynomial Sn (as in equation (7.1)), and so, in the (n + 1)-th coordinate of



MIN. DEG. LIFTS IN CHAR. 2 21

h1 + h2, we have(
xn

(
∂h1

∂x0

)pn

+ yn

(
∂h1

∂y0

)pn

+ . . .

)
+

(
xn

(
∂h2

∂x0

)pn

+ yn

(
∂h2

∂y0

)pn

+ . . .

)
+ . . .

=

(
xn

(
∂(h1 + h2)

∂x0

)pn

+ yn

(
∂(h1 + h2)

∂y0

)pn

+ . . .

)
+ . . . ,

where no omitted term involves xn or yn. Thus, it works for the sum.

For the product, remember that

P̄n = (Xpn

0 Yn +Xpn−1

1 Y p
n−1 + · · ·+XnY

pn

0 ) + . . . ,

where no omitted term involves either Xn or Yn. (See, for instance, formula (3) in [Fin02].)

Hence, the (n+ 1)-th coordinate of h1 · h2 is given by

hpn

2

(
xn

(
∂h1

∂x0

)pn

+ yn

(
∂h1

∂y0

)pn

+ . . .

)
+hpn

1

(
xn

(
∂h2

∂x0

)pn

+ yn

(
∂h2

∂y0

)pn

+ . . .

)
+ . . .

=

(
xn

(
∂(h1 · h2)
∂x0

)pn

+ yn

(
∂(h1 · h2)
∂y0

)pn

+ . . .

)
+ . . . ,

where no omitted term involves xn or yn. Therefore, it also works for the product.

�

The next lemma will be quite useful when analyzing the equations that define the Green-

berg transform of a curve over W(k), in particular in the construction of lifts of points.

Lemma 7.5. Let K and k be as in Lemma 7.3, s, t ∈ Ur−1(e) and h(x,y) ∈ W(k)[x,y].

Furthermore, let −v0 be the weighted degree of h, where the weight of x is defined to be

−v(s0) and the weight of y is defined to be −v(t0). Then, on the (r + 1)-th coordinate of

h(s, t), we have

sr

(
∂h

∂x0
(s0, t0)

)pr

+ tr

(
∂h

∂y0
(s0, t0)

)pr

+ . . . , (7.2)

where all the omitted terms do not involve sn or tn and have valuation less than or equal to

pr(v0 − re).

Proof. By Lemma 7.4, the (n + 1)-th coordinate of h(s, t) indeed is as in equation (7.2).

So, all that is left to do is to prove the statement about the valuation of the omitted terms.

For every monomial xiyj of h, disregarding the coefficient, the term sitj ∈ Ur−1(e). But

since the weighted degree of h is −v0, which implies that i v(s0) + j v(t0) ≥ v0, we have, by

Lemma 7.3, that h(s, t) ∈Mr−1(v0, e).

By the same reasoning, if s and t were in Ur(e) instead of in Ur−1(e), then h(s, t) would

be in Mr(v0, e), and the bounds would clearly hold. But the proof of Lemma 7.3 bounds
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the valuation of each monomial appearing in the sum of two elements of Mn(v0, e) and in

the product of an element of W(k) with an element of Mn(v0, e). So, this would bound the

valuation of every monomial appearing in the (r+ 1)-th coordinate of h(s, t) by pr(v0− e).
In our case, we are only missing the bounds for the valuations of sr and tr, but we could still

bound the valuation of every monomial that does not involve those two terms in exactly

the same way. Hence, since by Lemma 7.4 no omitted term in equation (7.2) involves tn or

sn, we can bound the valuations of the omitted terms by pr(v0 − e).

�

The following lemma will be helpful when dealing with the second coordinate of the

Greenberg transforms of curves.

Lemma 7.6. Let

h(x,y) =
∑
i,j

ai,j xiyj ∈ W2(k)[x,y],

and suppose that

h((x0, x1), (y0, y1)) = (h0(x0, y0), h1(x0, x1, y0, y1)).

Then, if

ai,j = (ai,j,0, ai,j,1),

we have

h1(x0, x1, y0, y1) = x1

(
∂h0

∂x0

)p
+ y1

(
∂h0

∂y0

)p
+ Ψ(h0) +

∑
i,j

ai,j,1 x
pi
0 y

pj
0 ,

where Ψ is as in Definition 6.10.

Proof. This is Lemma 8.1 in [Fin04]. �

8. Proofs of the Upper Bounds

In this section we prove the upper bounds for the minimal degree lifting with respect to

both x and y. More precisely, we prove here Propositions 6.1, 6.2, 6.3 and 6.4.

The following lemma is an adaptation of Lemma IV.1 from [VW99] to our case, and it is

the main tool to obtain the upper bounds for the degrees of the lifts of points.

Lemma 8.1. Let C be a curve given by equation (3.1), and R
def= O(U) be the ring of

regular functions on the affine part of C. Let also a, b, c ∈ R with (a, b) = 1, deg a ≤ n,

deg b = m and deg c ≤ r. Also, assume that n+m+(d− 2) ≤ r. Then, there exist u, v ∈ R
such that au+ bv = c with deg u ≤ (m+ (d− 2)) and deg v ≤ (r −m).
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Proof. Since m+ n+ (d− 2) ≤ r, the map

ψ : L((m+ (d− 2))P∞)⊕ L((r −m)P∞) → L(rP∞),

defined by ψ(u, v) def= au+ bv is well defined. Hence, to prove the lemma, it suffices to show

that ψ is surjective.

Since the genus of C is (d − 1)/2 and (m + d − 2), (r −m) and r are all greater than

(d−2), by the Riemann-Roch Theorem, or more precisely, Corollary II.5.5(c) of [Sil85], the

dimensions of the k-vector spaces above are

`((m+ d− 2)P∞) = m+ (d− 2)− (d− 1)/2 + 1,

`((r −m)P∞) = (r −m)− (d− 1)/2 + 1,

`(rP∞) = r − (d− 1)/2 + 1.

On the other hand, since a and b are relatively prime, (u, v) ∈ kerψ if, and only if, u = bz

and v = −az, for some z ∈ R.

Therefore, with the restrictions on the degrees of u and v, and since n+m+ (d− 2) ≤ r,

we have that ker(ψ) ∼= L((d− 2)P∞). Observing that `((d− 2)P∞) = d− 2− (d− 1)/2 + 1,

the dimension of our domain minus the dimension of the kernel is equal the dimension of

the co-domain, and hence our map is surjective.

�

The next lemma is the main step for the proofs of Propositions 6.1 and 6.2.

Lemma 8.2. Let C and C be as in equations (3.1) and (3.3) respectively, and let

ν̄(x0, y0) = ((x0, F1, . . . , Fr−1), (y0, G1, . . . , Gr−1))

be a lift of points such that ν̄∗x, ν̄∗y ∈ Ur−1(e), with e ≥ (d− 2)(1 + 1/2r)/r. Then, ν̄ can

be completed to a lift

ν(x0, y0) = ((x0, F1, . . . , Fr−1, Fr, . . . ), (y0, G1, . . . , Gr−1, Gr, . . . )),

where ν∗x, ν∗y ∈ U(e). Moreover,

degGn ≤ 2n+1(d− 1) + (d− 2),

for all n ≥ r.

Proof. We shall inductively construct the Fn’s and Gn’s for n ≥ r. So, assume we have

(x0, F1, . . . , Fn−1), (y0, G1, . . . , Gn−1) ∈ Un−1(e) for some n ≥ r. We shall find Fn, Gn ∈
O(U) such that

(x0, y0) 7→ ((x0, F1, . . . , Fn−1, Fn), (y0, G1, . . . , Gn−1, Gn))
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is a lift of points with (x0, F1, . . . , Fn−1, Fn), (y0, G1, . . . , Gn−1, Gn) ∈ Un(e).

By Lemma 7.4, in the (n+ 1)-th coordinate of the Greenberg transform, one has

yng
2n

+ xn(f ′ + g′y0)2
n

= . . . , (8.1)

where no omitted term depends on xn or yn. Thus, to produce a lift modulo pn+1, we need

to find Fn and Gn such that

Gng
2n

+ Fn(f ′ + g′y0)2
n

= . . . , (8.2)

where the omitted terms here are obtained by substituting xi by Fi and yi by Gi, for

i = 1, . . . , (n− 1), in equation (8.1). (Note that the equality in equation (8.2) is equality in

k(C), not in k[x0, y0].)

We shall apply Lemma 8.1 with a
def= g2n

, b def= (f ′ + g′y0)2
n

and c as the omitted terms

in (8.2). By Lemma 7.5, c has degree less than or equal to 2n(2d+ne). By assumption C is

non-singular, and hence ((f ′ + g′y0), g) = 1. Furthermore, since e ≥ (d− 2)(1 + 1/2r)/r ≥
(d− 2)(1 + 1/2n)/n and deg g ≤ (d− 1), we have 2n(2d+ ne) ≥ deg a+ deg b+ (d− 2), and

thus we can indeed apply Lemma 8.1, which gives us Gn and Fn such that

degGn ≤ 2n+1(d− 1) + (d− 2), degFn ≤ 2n(2 + ne).

Therefore, clearly (x0, F1, . . . , Fn) ∈ Un(e), and using again the bound on e, one can easily

verify that 2n+1(d− 1) + (d− 2) ≤ 2n(d+ ne), yielding that (y0, G1, . . . , Gn) ∈ Un(e). �

With the above lemma in hand, we can now prove Proposition 6.1.

Proof of Proposition 6.1. If one applies Lemma 8.2 with r = 1, one obtains the existence of

a lift such that

degGn ≤ 2n+1(d− 1) + (d− 2), degFn ≤ 2n(2 + n3(d− 2)/2)

for all n ≥ 1. So, we need to show that we can improve that bound on the degree of F1 to

have it as in the statement.

We take, then, a closer look at the construction of F1 and G1. We need in this case F1

and G1 to satisfy

G1g
2 + F1(f ′ + g′y0)2 = . . . ,

where the omitted terms are the terms independent of x1 and y1 in the second coordinate

of the Greenberg transform of C. We apply Lemma 8.1 again, with a = g2, b = (f ′ + g′y0)2

and c as the omitted terms. In this case, observe that, by Lemma 7.5, deg c ≤ 2(2d+ e) for

any e > 0, and hence deg c ≤ 4d. So, to apply the lemma, we take r def= max{4d, 2 deg g +

4(d− 1) + (d− 2)}.
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This way we obtain F1 and G1 such that degG1 ≤ 4(d− 1) + (d− 2) and

degF1 ≤ r − 4(d− 1) = max{4, 2 deg g + (d− 2)} < 2(2 + 3(d− 2)/2),

and hence, (x0, F1), (y0, G1) ∈ U1(3(d− 2)/2).

Finally, Lemma 8.2, with r = 2 and e = 3(d− 2)/2, finishes the proof.

�

Example 8.3. Consider the ordinary elliptic curve

E/k : y2
0 + x0y0 = x3

0 + 1.

Then, the map

ν(x0, y0) = ((x0, F1, F2), (y0, G1, G2)),

with

F1
def= x0y0

F2
def= 1 + x3

0 + x5
0 + x7

0 + x8
0 + x9

0 + x10
0 + (x0 + x5

0 + x7
0)y0

G1
def= x0 + x3

0y0

G2
def= 1 + x0 + x2

0 + x3
0 + x6

0 + (1 + x5
0 + x6

0 + x7
0)y0

is a minimal degree lifting from E to

E/W3(k) : y2 + xy = x3 + (1, 0, 1)

with respect to y. Notice that, in contrast with the case of characteristic p > 2, we cannot

obtain a minimal degree lift of points that is hyperelliptic, i.e., that commutes with the

hyperelliptic involutions of C and C. Also, observe the the degrees are equal to the upper

bounds given by Proposition 6.1.

On the other hand, E is not the absolute minimal degree curve over E, since the curve

is ordinary and the canonical lifting with the elliptic Teichmüller lift would give us smaller

degrees.

Again, in contrast with the case of p > 2, or, more precisely, with Proposition 2.3

in [Fin04], note that if we have one particular lift of points ν satisfying the bound in

Proposition 6.1, this is not necessarily a minimal degree lift of points with respect to y.

This happens because we have a non-trivial kernel for the map ψ defined in the proof of

Lemma 8.1.
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On the other hand, since we know exactly what that kernel is, it is fairly easy to obtain

a minimal degree lift of points with respect to y in every step of the procedure of finding

the Gn’s and Fn’s: after a pair (Gn, Fn) is found, any other pair

G̃n
def= Gn + z (f ′ + g′y0)2

n
,

F̃n
def= Fn + z g2n

,

with deg z ≤ (d − 2), defines another lift also satisfying the bounds from Proposition 6.1.

Observe that since deg z < d, we must have z ∈ k[x0], and so deg z is even. Hence if degGn

is even and greater than or equal to 2n deg g, then the degree of Gn can always be lowered,

and if either degGn is odd or less than or equal to 2n deg g, then it is a minimal degree lift

with respect to y.

Something else worth noting is that the smaller deg g is, the smaller is the bound for

degF1. Also, as stated in Theorem 6.5, having g = x0 (and so deg g = 2) in fact yields

smaller degrees also for G1.

Lemma 8.2 tells us that having smaller degrees for first coordinates of a lift of points allows

us to obtains lifts with smaller degrees for the remaining Fn’s. Proposition 6.2, which is

the analogue to Proposition 5.4 in [Fin04] and an immediate consequence of Lemma 8.2,

illustrates this point in a particular case.

Proof of Proposition 6.2. Just apply Lemma 8.2 with e = 5(d− 2)/8 and r = 2.

�

To prove Propositions 6.3 and 6.4, we first introduce a lemma analogous to Lemma 8.2.

As we can see in its statement, in contrast with the case with Lemma 8.2, the degrees of the

Gn’s increase in such a way that there is no positive e for which the obtained (y0, G1, G2, . . . )

is in U(e).

Lemma 8.4. Let C and C be as in equations (3.1) and (3.3) respectively, and let

ν̄(x0, y0) = ((x0, F1, . . . , Fr−1), (y0, G1, . . . , Gr−1))

be a lift of points such that ν̄∗x, ν̄∗y ∈ Ur−1(er−1), with er−1 ≥ (deg g + (d− 2)/2r − 2)/r.

Then, ν̄ can be extended to a lift

ν(x0, y0) = ((x0, F1, . . . , Fr−1, . . . , Fn), (y0, G1, . . . , Gr−1, . . . , Gn)),

with ν∗x, ν∗y ∈ U(en), where en = er−1 + (d− deg g)
∑n

j=r 1/j. Moreover,

degFn ≤ 2n deg g + (d− 2),

for all n ≥ r.
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Proof. We again construct inductively the desired Fi’s and Gi’s. So, assume we have

(F0, . . . , Fn−1), (G0, . . . , Gn−1) ∈ Un−1(en−1). By Lemma 7.5, to extend this map to the

next coordinate, we have to find Fn and Gn such that

Fn(f ′ + g′y0)2
n

+Gng
2n

= . . . ,

where the omitted terms (coming from the (n+1)-th coordinate of the Greenberg transform)

have degree less than or equal to 2n(2d+ nen−1).

Since

en−1 ≥ er−1 ≥ (deg g + (d− 2)/2r − 2)/r ≥ (deg g + (d− 2)/2n − 2)/n, (8.3)

we have 2n(2d+ nen−1) ≥ 2n+1(d− 1) + 2n deg g + (d− 2), and thus we can apply Lemma

8.1. We then obtain Fn and Gn such that

degFn ≤ 2n deg g + (d− 2)

degGn ≤ 2n(2d+ nen−1)− 2n deg g = 2n

(
d+ n

(
d− deg g

n
+ en−1

))
= 2n(d+ nen).

Finally, inequality (8.3) implies that degFn ≤ 2n deg g+(d−2) ≤ 2n(2+nen), and hence

ν∗x, ν∗y ∈ U(en).

�

We can now prove Propositions 6.3 and 6.4.

Proof of Proposition 6.3. We just apply Lemma 8.4, with r = 1 and e0 = max{0,deg g +

(d− 6)/2}.
�

Proof of Proposition 6.4. The bounds on degF1 and degG1 imply that (x0, F1), (y0, G1) ∈
U1((d − 2)/2). Since deg g ≤ (3d + 2)/4, we have e1 ≥ (deg g + (d − 2)/4 − 2)/2. The

proposition then immediately follows from Lemma 8.4.

�

9. Proofs of the Lower Bounds

In this section we prove the lower bounds (and the necessary conditions to achieve those

lower bounds) for the minimal degree liftings with respect to both x and y. More precisely,

we prove Theorems 6.5 and 6.7 .
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Proof of Theorem 6.5. If we work modulo 2n+1, or equivalently, truncate the lift ν at the

(n+1)-th coordinate, Theorem 4.1 in [Fin04] tells us that there exists a lift of φn, the 2n-th

power Frobenius of C associated to ν. We shall denote such lift by (bold-face) φn.

Furthermore, Theorem 4.1 in [Fin04] also tells us that φn can be written as

φn(x,y) =

(
n∑

i=0

2iF 2n−i

i ,

n∑
i=0

2iG2n−i

i

)
, (9.1)

where F i,Gi ∈ Wn+1(k)[x,y] are lifts of Fi, Gi ∈ k[x0, y0]. Hence, if

ωn
def=

dx

2y + gσn(x)
=

dy

(f ′)σn(x)− (g′)σn(x) y
, (9.2)

then (1/2n φn)∗ωn reduces, modulo 2, to

ωn
def=
∑n

i=0G
2n−i−1
i dGi/dy0

(f ′ + g′ y0)2
n dy0 =

∑n
i=0G

2n−i−1
i dGi/dy0

(f ′ + g′ y0)2
n−1

dx0

g
. (9.3)

Observe that the differential dx0/g does not vanish on U , and since ωn is regular on Uσn
,

ωn must also be regular on U . Thus,∑n
i=0G

2n−i−1
i dGi/dy0

(f ′ + g′ y0)2
n−1

∈ O(U),

and so it can be written as a polynomial, say hn(x0, y0). Hence

ωn = hn(x0, y0)
dx0

g
(9.4)

and
dGn

dy0
= hn(x0, y0)(f ′ + g′ y0)2

n−1 +
n−1∑
i=0

G2n−i−1
i

dGi

dy0
. (9.5)

Note that hn(x0, y0) is not equal to zero, since (1/2nφn)∗ is the “inverse” of the n-th power

of the Cartier operator, which we shall denote by Cn, and therefore, Cn(ωn) = dx0/g(x0) 6= 0,

which implies that ωn cannot be equal to zero.

Now, for i = 0, . . . , (n− 1),

deg
(
G2n−i−1

i

dGi

dy0

)
= 2n+1(d− 1)− 2n−i(d− 2)− d < (2n − 1)(2d− 2),

and hence,

deg
(
dGn

dy0

)
= deg hn + (2n − 1)(2d− 2) ≥ (2n − 1)(2d− 2).

Thus,

degGn ≥ 2n+1(d− 1)− (d− 2).

Moreover, we can only have equality if hn(x0, y0) is a constant.

Let us assume now that

degGi = 2i+1(d− 1)− (d− 2),
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for i = 0, . . . , n. By equation (9.4) and the conclusion of the previous paragraph, we must

have

ωi = λi
dx0

g
= λi

dy0

f ′ + g′y0
, (9.6)

where λi ∈ k.
On the other hand, for i = 1, ω1 is defined as the reduction modulo 2 of

1
2
φ∗(ω1) =

1
2
φ∗
(

dx

2y + gσ

)
,

and thus, by equation (9.1) with n = 1,

ω1 =
dF1 + x0dx0

g(x0)2
. (9.7)

Comparing equations (9.7) and (9.6), with i = 1, we obtain

(λ1g + x0) =
dF1

dx0
.

By taking differentials in the above equation, and since we are in characteristic 2, we obtain

(λ1g
′ + 1)dx0 = d

(
dF1

dx0

)
= 0.

Thus, λ1 = λ−1, where λ is then the necessarily non-zero coefficient of x0 in g, and we have

established items (1) and (2) of the theorem. Also, note that, by equation (9.5), we also

proved item (3) for n = 1 in the theorem.

With the case i = 1 done, we can now finish the proof of item (3) by induction on i. So,

assume that

dGi−1 = λ−(2i−1−1)(f ′ + g′y0)2
i−1−1 dy0 +

i−2∑
j=0

G2i−1−j−1
j dGj

for some i ≤ n.

The properties of the Cartier divisor, together with our induction hypothesis, give us

C

(∑i
j=0G

2i−j−1
j dGj

(f ′ + g′ y0)2
i

)
=

∑i−1
j=0G

2i−1−j−1
j dGj

(f ′ + g′ y0)2
i−1 = λ−(2i−1−1) dy0

f ′ + g′y0
. (9.8)

On the other hand, since by assumption degGi = 2i+1(d−1)− (d−2), equation (9.6) holds,

and thus we just need to show that λi = λ−(2i−1). But, since g′ = λ,

C

(∑i
j=0G

2i−j−1
j dGj

(f ′ + g′ y0)2
i

)
= C

(
λi

dy0

f ′ + g′y0

)
= λ

1/2
i λ1/2 dy0

f ′ + g′y0
. (9.9)

Comparing equations (9.8) and (9.9), we obtain λi = λ−(2i−1).

�
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The next proposition, which follows from an analysis of the proof of Theorem 6.5 above,

establishes a relation between the formulas for the dFn’s and formulas for the dGn’s in

general and will be used in the proof of Theorem 6.12.

Proposition 9.1. Let C and C be as in equations (3.1) and (3.3), and ν, as in equation

(3.4), be a lift of points between the affine parts of C and C. Then,

dFn = hng
2n−1 dx0 +

n−1∑
i=0

F 2n−i−1
i dFi,

and

dGn = hn(f ′ + g′y0)2
n−1 dy0 +

n−1∑
i=0

G2n−i−1
i dGi

for some hn ∈ k[x0, y0].

Proof. In the proof of Theorem 6.5 one sees that, by using the two different forms of ωn in

equation (9.2), we must have

ωn =
∑n

i=0 F
2n−i−1
i dFi

g2n =
∑n

i=0G
2n−i−1
i dGi

(f ′ + g′ y0)2
n .

Also, still following the proof of Theorem 6.5, we see that, as in equation (9.4),

ωn = hn
dx0

g
= hn

dy0

f ′ + g′y0

for some non-zero hn ∈ k[x0, y0]. Comparing the two formulas for ωn finishes the proof.

�

As observed in section 6, the same idea used to prove Theorem 6.5 gives the analogous

result for the Fn’s.

Proof of Theorem 6.7. We work modulo 4, and hence there is a lift of φ, which we denote by

φ, given by equation (9.1) (with n = 1). With ω1 as in equation (9.2), (1/2 φ)∗ω1 reduces,

modulo 2, to

ω1
def=

dF1 + x0 dx0

g2
=
x0 dx0

g2
.

Since dx0/g does not vanish on U , and since ω1 is regular on Uσ, ω1 must also be regular

on U . Thus,

ω1 = h1
dx0

g

for some h1 ∈ k[x0, y0]. Hence

x0 = h1 g.

Therefore, either g = λ or g = λx0 for some λ ∈ k. Since the curve is non-singular, we must

have λ 6= 0.

�
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10. Proofs of Propositions About Achieving the Lower Bound

In this section we prove Propositions 6.6, 6.8 and 6.9.

Proof of Proposition 6.6. By Theorem 6.5, we have that g′ = λ, with λ ∈ k×. This says

that the coefficient of x0 in g is λ, and this, with a change of variables x̃0 = λx0 and

ỹ0 = y0/λ
d/2, we may assume, without loss of generality, that λ = 1.

Write

f(x) =
d∑

i=0

aix
i,

and

g(x) =
(d−1)/2∑

j=0

bjx
j ,

where

ai = (ai,0, ai,1), for i = 0, . . . , d,

bj = (bj,0, bj,1), for j = 0, . . . , (d− 1)/2.

By Lemma 7.6, we have on the second coordinate of equation the Greenberg transform

of equation (3.3)

y1g
2 + x1(g′y0)2 + Ψ(y2

0 + g y0) +

(d−1)/2∑
j=0

bj,1x
2j
0

 y2
0 = x1(f ′)2 + Ψ(f) +

d−1∑
i=0

ai,1x
2i
0 ,

For ν to be well defined, it is necessary that

G1 g
2 + F1(g′y0)2 + Ψ(y2

0 + g y0) +

(d−1)/2∑
j=0

bj,1x
2j
0

 y2
0 = F1(f ′)2 + Ψ(f) +

d−1∑
i=0

ai,1x
2i
0 ,

in k(C), or

G1 g
2 + F1(f ′ + g′y0)2 = Ψ(f) +

d−1∑
i=0

ai,1x
2i
0 + Ψ(y2

0 + g y0) +

(d−1)/2∑
j=0

bj,1x
2j
0

 y2
0. (10.1)

One can easily check that all the terms in the right-hand-side of the equation above have

degrees less than or equal to (4d− 1). Therefore, all terms from G1 g
2 and F1(f ′+ g′y0)2 of

degree greater than (4d− 1), if any, have to cancel each other out.

Assume now that deg g ≥ (d + 1)/2, so that we have deg(G1 g
2) ≥ (4d − 1). Since

degG1 = (3d− 2), we must then have

degF1 = 2deg g − d+ 2 ≤ d. (10.2)

Hence, if we write

F1 = h1 + h2 y0, h1, h2 ∈ k[x0],
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then h2 ∈ k. Therefore, by Proposition 9.1 and Theorem 6.5,

dF1 =
(
h′1 +

f ′h2

g
+
h2

g
y0

)
dx0 = (g + x0)dx0.

Thus, h2 = 0 and F ′1 = h′1 = g+x0. Then, degF1 ≥ deg g+2, unless deg g = 2, in which case

the proposition automatically holds. But if degF1 ≥ deg g+2, then the equality in equation

(10.2) would imply that deg g ≥ d, a contradiction, since the degree of deg g is always less

than or equal to (d− 1). Therefore, if deg g 6= 2, then we must have deg g < (d+ 1)/2.

But, if deg g < (d+1)/2, then all terms in the right-hand-side of (10.1) have degrees less

than or equal to (4d− 2) and since G1 g
2 also has degree less than or equal to this bound,

so does F1(f ′ + g′y0)2. Hence, degF1 ≤ 2 and therefore F1 is a polynomial in x0 of degree

(as a function in k(C)) at most 2.

Now, all terms of odd degree in equation (10.1) come from either G1g
2 or Ψ(y2

0 + g y0) =

g y3
0 + Ψ(g y0). Observe that every term of Ψ(gy0) has even degree, since every term of gy0

has odd degree. So, the terms of highest odd degree in G1g
2 and gy3

0 have to cancel out

each other. Hence,

(3d− 2) + 2 deg g = 3d+ deg g.

Thus, deg g = 2.

�

We now proceed to prove Proposition 6.8.

Proof of Proposition 6.8. We prove the proposition by induction on n. For n = 1, in order

to have a lift modulo 4, F1 and G1 have to satisfy

G1 λ
2 + F1 (f ′)2 = . . . ,

where λ def= g ∈ k× and the omitted terms are the terms in the right hand side of equation

(10.1), and therefore, have degrees less than or equal to 4d− 1. Since deg(f ′)2 = 4d− 4, we

can take F1 to be any constant and obtain, from the above equation, G1 with degG1 ≤ 4d−1.

Thus, the bounds hold for n = 1.

Now suppose that the bounds for the Gi’s in the statement hold for i = 1, . . . , n. Then

(y0, G1, . . . , Gn) ∈ Un(en), where

en
def= d

 n∑
j=1

1
j

− 1
2
,

since, for i = 1, . . . , n,

degGi ≤ 2i

d+ i

−1
2

+ d ·
i∑

j=1

1
j

 ≤ 2n

d+ n

−1
2

+ d ·
n∑

j=1

1
j

 = 2n(d+ n en).
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Since, clearly (x0, F1, . . . , Fn) ∈ Un(en), by Lemma 7.5, to obtain a lift modulo 2n+2 we

need to find Fn+1 and Gn+1 such that

Gn+1 λ
2n+1

+ Fn+1 (f ′)2
n+1

= . . .

where the omitted terms have degrees less then or equal to 2n+1(2d + (n + 1) en). Hence,

we can take Fn+1 to be any constant and find Gn+1 with

degGn+1 ≤ 2n+1(2d+ (n+ 1) en) = 2n+1

2d+ (n+ 1)

−1
2

+ d

n∑
j=1

1
j


= 2n+1

d+ (n+ 1)

−1
2

+ d

n+1∑
j=1

1
j

 ,

which finishes the proof.

�

Finally, we prove Proposition 6.9.

Proof of Proposition 6.9. We shall use the same notation for f(x) and g(x) as in the proof

of Proposition 6.6. We will also assume that b0,1 = b1,1 = 0, since we can always make a

change of variables for C to have it that way.

Write,

G1 = h1 + h2 y0, h1, h2 ∈ k[x0].

To have degG1 ≤ (3d − 2), as in the statement, we need to find h1 and h2 such that

deg h1 ≤ (3d− 3) and deg h2 = (2d− 2).

Since y2
0 = x0y0 + f(x0) (in k(C)), we can rewrite equation (10.1) asx2

0 h1 + F1 f + x2
0 f + f

(d−1)/2∑
j=2

bj,1x
2j
0

+ F1 (f ′)2 + Ψ(f) +
d−1∑
i=0

ai,1x
2i
0

+

x2
0 h2 + x0 F1 + x3

0 + x0 f + x0

(d−1)/2∑
j=2

bj,1x
2j
0

 y0 = 0,

and thus our goal is to find ai,1’s, bj,1’s (which will define C) and F1, h1, h2 (which will

define ν) that satisfy this equation (and the requirements on the degrees of h1, h2 and F1).

Hence we need:

x2
0 h1 + F1 f + x2

0 f + f

(d−1)/2∑
j=2

bj,1x
2j
0

+ F1 (f ′)2 + Ψ(f) +
d−1∑
i=0

ai,1x
2i
0 = 0 (10.3)
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and

x2
0 h2 + x0 F1 + x3

0 + x0 f + x0

(d−1)/2∑
j=2

bj,1x
2j
0

 = 0 (10.4)

From the term in x0 in equation (10.4), and since we want F1 ∈ k, one immediately sees

that we need F1 = a0,0, i.e., F1 has to be the constant term of f . Hence, equation (10.4)

has now only terms of power 2 or higher in x0, and we can define

h2
def=

f + a0,0

x0
+ x0 +

(d−1)/2∑
j=2

bj,1x
2j−1
0

for any choice of bj,1’s that we might make. (Note that deg h2 = (2d− 2).)

We now try to find a suitable h1. The constant term of equation (10.3) is a2
0,0 +a0,0 a

2
1,0 +

a0,1, and thus we need to have a0,1
def= a2

0,0 + a0,0 a
2
1,0. Also, since the coefficient of the term

in x0 of Ψ(f(x0)) is a0,0 a1,0, our choice of F1 makes the coefficient of the term in x0 in

(10.3) zero. Hence, let

f1(x0)
def=

(d−1)/2∑
j=2

bj,1x
2j
0

f2(x0)
def=

2d−1∑
i=2

αi x
i
0

def= a0,0f + x2
0f + a0,0(f ′)2 + Ψ(f).

and one can now always have h1 ∈ k[x0] that will satisfy equation (10.3) by taking

h1
def=

2d−3∑
l=0

βl x
l
0

def=
1
x2

0

(
d−1∑
i=0

ai,1x
2i
0 + f f1 + f2

)
. (10.5)

On the other hand, we need deg h1 ≤ (3d−3), and thus we must choose the ai,1’s, for i ≥ 1,

and bj,1’s, for j ≥ 2, in such a way that βl = 0 for all l ≥ (3d− 1)/2.

By choosing the bj,1’s such that

1 0 0 . . . 0

ad−2,0 1 0 . . . 0

ad−4,0 ad−2,0 1 . . . 0
...

...
...

. . .
...

a5,0 a7,0 a9,0 . . . 1


·



b(d−1)/2,1

b(d−3)/2,1

b(d−5)/2,1

...

b2,1


=



α2d−1

α2d−3

α2d−5

...

αd+4


,

we obtain f1 such that (ff1 + f2) has no odd power of x0 greater than (d+ 2) ≤ (3d+ 1)/2.

Since
∑d−1

i=0 ai,1x
2i
0 has only even powers of x0, this implies that βl = 0 for all odd l ≥ (d+2).

If d = 3, then (d + 2) = (3d + 1)/2 = 5, and hence we have we have βl = 0 for all odd

l ≥ (3d− 1)/2 = 4. If d > 3, then (d+ 2) ≤ (3d− 1)/2, and we also have βl = 0 for all odd

l ≥ (3d− 1)/2.
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Now, if we let

ai,1
def= coefficient of x2i

0 in (f f1 + f2),

(with f1 chosen as above) for i = b(3d−1)/4c, . . . , (d−1) (note that b(3d−1)/4c ≥ 2), since

(2b(3d − 1)/4c − 2) ≤ (3d − 1)/2, we obtain βl = 0, for all even l such that (3d − 1)/2 ≤
l ≤ (2d− 4).

Hence βl = 0 for all l ≥ (3d− 1)/2, and thus deg h1 ≤ (3d− 3).

�

If d = 3, i.e., if C is an elliptic curve, then the requirement that g′ = λ ∈ k× is equivalent

to saying that deg g = 2, which, by item 1 of Theorem 6.13, is a necessary and sufficient

condition for elliptic curve to be ordinary. In this case, by Proposition 4.2 in [VW00], the

construction described above actually gives us the elliptic Teichmüller lift and the canonical

lifting of the elliptic curve (modulo 4). Hence, by following this procedure, one can easily

reproduce the explicit formulas for the canonical lifting and elliptic Teichmüller lift (in

characteristic 2) exhibited in [VW00].

11. Proofs About Lifting the Frobenius

In this section we prove Proposition 6.11 and Theorem 6.12. But, before we can prove

Proposition 6.11, we shall need two simple lemmas.

Lemma 11.1. Let P (X,Y ) be a polynomial in two variables. Then

P (X0 + pX1, Y0 + pY1)

≡ P (X0, Y0) + p

(
∂P

∂X
(X0, Y0)X1 +

∂P

∂Y
(X0, Y0)Y1

)
(mod p2).

Proof. This is an easy application of Taylor’s formula for P (X,Y ). �

We will also use the following lemma:

Lemma 11.2. Let C/k and C/W(k) be curves given by equation (3.1) and (3.3) respectively

and

ν = ((x0, F1, . . . ), (y0, G1, . . . ))

be a lift of points between their affine parts. Then

(f ′ + g′y0)2
((

x0 +
∂F1

∂x0

)
+
f ′ + g′y0

g

∂F1

∂y0

)
+

g2

(
∂G1

∂x0
+
f ′ + g′y0

g

(
∂G1

∂y0
+ y0

))
= 0 (11.1)
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Proof. By Theorem 4.1 in [Fin04],

φ̄(x,y) def= (x2 + 2F 1,y
2 + 2G1) (11.2)

is a well defined lift of the Frobenius modulo 4. Since
1
2
φ̄
∗(ωσ) =

1
2
φ̄
∗
(

dx

2y + gσ

)
=

1
2
φ̄
∗
(

dy

(f ′)σ − (g′)σy

)
,

using equation (11.2), the reduction the equation above modulo 2 gives us

dF1 + x0dx0

g2
=
dG1 + y0dy0

(f ′ + g′y0)2
.

Since dy0 = (f ′ + g′y0)dx0/g, equation (11.1) follows. �

We now can prove Proposition 6.11.

Proof of Proposition 6.11. We first prove that the condition is necessary. Assume we have

a lift of the Frobenius associated to ν. By Theorem 4.1 in [Fin04], it must have the form

φ(x,y) = (x2 + 2F 1 + 4P ,y2 + 2G1 + 4Q),

for some P ,Q ∈ W3(k)[x,y].

Let δ be the 2-derivation associated to φ (as in [Bui96]):

δu
def=

φ∗uσ − u2

2
.

We then have

δx = F 1 + 2P

and, using Lemma 11.1,

δ2x =
(F 1 + 2P )σ ◦ φ− (F 1 + 2P )2

2

=
F σ

1 (x2,y2)− F 2
1

2
+
∂F 1

∂x

σ

(x2,y2) · F 1 +
∂F 1

∂y

σ

(x2,y2) ·G1+

P σ(x2,y2) + 2 · (. . . ).

(11.3)

But, by Lemma 2.6 of [Bui96], the reduction modulo 2 of δ2x must be equal to F2 +x2
0 F1 +

F 2
1 . Also, since the reduction modulo 2 of P σ(x2,y2) is clearly a square, say P 2, and F 1 is

the Teichmüller lift of F1, reducing equation (11.3) modulo 2, we obtain

F2 + x2
0 F1 + F 2

1 = Ψ(F1) +
(
∂F1

∂x0

)2
F1 +

(
∂F1

∂y0

)2
G1 + P 2. (11.4)

An analogous computation with δ2y, gives

G2 + y2
0 G1 +G2

1 = Ψ(G1) +
(
∂G1

∂x0

)2
F1 +

(
∂G1

∂y0

)2
G1 +Q2,

and hence, the condition is necessary.
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We now prove the converse, more precisely, that φ, as in the statement, is well defined

and that the diagram

U(W3(k̄))
φ−−−−→ Uσ(W3(k̄))

ν

x xνσ

U(k̄)
φ−−−−→ Uσ(k̄)

(11.5)

commutes, where U and U are the affine parts of C and C respectively. It suffices to prove

it for the Greenberg transform. Defining

h
def= y2 + g(x)y − f(x),

we write

h(x,y) = (h0(x0, y0), h1(x0, x1, y0, y1), h2(x0, x1, x2, y0, y1, y2)).

Then, to prove that φ is well defined, it suffices to prove that φ∗hσ
i ∈ I, for i = 0, 1, 2,

where I def= (h0, h1, h2).

By Theorem 4.1 of [Fin04], we have that φ∗hσ
0 ,φ

∗hσ
1 ∈ I. So we just need to show that

φ∗hσ
2 ∈ I.

One has

x2 = (x0, x1, x2)2 = (x2
0, 0, x

4
0 x

2
1 + x4

1).

Also, by Lemma 7.6, and noticing that F 1 is the Teichmüller lift of F1,

2F 1 =

(
0, F 2

1 , x
2
1

(
∂F1

∂x0

)4

+ y2
1

(
∂F1

∂y0

)4

+ Ψ(F1)2
)
.

Hence, if P is as in the statement,

x2 + 2F 1 + 4P =
(
x2

0, F
2
1 , F

2
2 + X2

2

)
, (11.6)

where,

X2
def= (x1 + F1)

(
x0 +

∂F1

∂x0

)2

+ (y1 +G1)
(
∂G1

∂y0

)2

+ (x1 + F1)2,

and in a similar manner,

y2 + 2G1 + 4Q =
(
y2
0, G

2
1, G

2
2 + Y2

2

)
, (11.7)

where

Y2
def= (x1 + F1)

(
∂G1

∂x0

)2

+ (y1 +G1)
(
y0 +

∂G1

∂y0

)2

+ (y1 +G1)2.

Note that, by Lemma 7.4,

hσ
2 = (gσ)4 y2 + ((f ′)σ + (g′)σy0)4 x2 + . . . ,

where no omitted term depends on either x2 or y2. Hence

φ∗hσ
2 = g8 (G2 + Y2)2 + (f ′ + g′y0)8 (F2 + X2)2 + . . . . (11.8)
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Since

ν = ((x0, F1, F2), (x0, G1, G2))

is a (well defined) lift,

g8G2
2 + (f ′ + g′y0)8 F 2

2 + · · · ≡ 0 (mod (h0)),

where the omitted terms are the same as the ones in formula (11.8). Therefore

φ∗hσ
2 ≡ g8 Y2

2 + (f ′ + g′y0)8 X2
2 (mod I),

and it suffices to prove that

g4 Y2 + (f ′ + g′y0)4 X2 ≡ 0 (mod I),

or,

(x1 + F1)
(

(f ′ + g′y0)2
(
x0 +

∂F1

∂x0

)
+ g2 ∂G1

∂x0

)2

+

(y1 +G1)
(

(f ′ + g′y0)2
∂F1

∂y0
+ g2

(
y0 +

∂G1

∂y0

))2

+(
(x1 + F1)(f + g′y0)2 + (y1 +G1) g2

)2 ≡ 0 (mod I).

Applying Lemma 11.2, this equation becomes(
(x1 + F1)

(f ′ + g′y0)2

g2
+ (y1 +G1)

)(
(f ′ + g′y0)2

∂F1

∂y0
+ g2

(
y0 +

∂G1

∂y0

))2

+(
(x1 + F1)(f + g′y0)2 + (y1 +G1) g2

)2 ≡ 0 (mod I).

Thus, it is enough to prove that

(x1 + F1)(f ′ + g′y0)2 + (y1 +G1) g2 ≡ 0 (mod I).

But h1, ν
∗h1 ≡ 0 (mod I), and then

h1(x0, x1, y0, y1) + h1(x0, F1, y0, G1) =

(x1 + F1)(f ′ + g′y0)2 + (y1 +G1) g2 ≡ 0 (mod I),

which finishes the proof that φ is well defined.

Finally, equations (11.6) and (11.7) show the diagram (11.5) commutes, since ν∗X2 =

ν∗Y2 = 0.

�

With Proposition 6.11 we can now prove Theorem 6.12.
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Proof of Theorem 6.12. By Proposition 9.1, we have

dG1 =
(
h (f ′ + g′y0) + y0

)
dy0, (11.9)

dG2 =
(
h3 (f ′ + g′y0)3 + y3

0

)
dy0 +G1 dG1. (11.10)

Moreover, by equation (3.2), dF1 = (h g + x0) dx0 implies that

∂F1

∂x0
+
∂F1

∂y0

f ′ + g′y0

g
= h g + x0, (11.11)

and equation (11.9) implies that

∂G1

∂x0

g

f ′ + g′y0
+
∂G1

∂y0
= h (f ′ + g′y0) + y0. (11.12)

Now, to prove the theorem, by Proposition 6.11, it suffices to prove that

d

(
F2 + x2

0 F1 + Ψ(F1) +
(
∂F1

∂x0

)2
F1 +

(
∂F1

∂y0

)2
G1

)
=

dF2 + x2
0 dF1 + d(Ψ(F1)) +

(
∂F1

∂x0

)2
dF1 +

(
∂F1

∂y0

)2
dG1 = 0 (11.13)

and

d

(
G2 + y2

0 G1 + Ψ(G1) +
(
∂G1

∂x0

)2
F1 +

(
∂G1

∂y0

)2
G1

)
=

dG2 + y2
0 dG1 + d(Ψ(G1)) +

(
∂G1

∂x0

)2
dF1 +

(
∂G1

∂y0

)2
dG1 = 0 (11.14)

Since

d(Ψ(F1)) = x0

(
∂F1

∂x0

)2
dx0 + y0

(
∂F1

∂y0

)2
dy0 + F1dF1, (11.15)

using the formulas for dF1 and dF2 (in the statement), together with equations (11.9) and

(3.2), equation (11.13) reduces to

h g

(
h g + x0 +

∂F1

∂x0
+
∂F1

∂y0

f ′ + g′y0

g

)2

dx0 = 0, (11.16)

which immediately follows from equation (11.11).

We prove that equation (11.14) holds in a similar fashion. Using the formula for dF1,

equations (11.9), (11.10) and (3.2), and the analogue to equation (11.15) for Ψ(G1), a

tedious computation shows that equation (11.14) reduces to

h (f ′ + g′y0)
(
h (f ′ + g′y0) + y0 +

∂G1

∂x0

g

f ′ + g′y0
+
∂G1

∂y0

)2

dy0 = 0,

which immediately follows from equation (11.12). Hence (11.14) also holds.
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To finish the proof, it suffices to show now that if either degFn = 0 or if degGn =

2n+1(d− 1)− (d− 2), for n = 1, 2, then there exists h ∈ k(C) such that

dF1 = (h g + x0) dx0,

dF2 = (h3 g3 + x3
0) dx0 + F1 dF1.

If degF1 = degF2 = 0, then dF1 = dF2 = 0. Moreover, by Theorem 6.7, either g = λ or

g = λx0, for some λ ∈ k×. Thus, take h = λ−1x0 if g = λ, or h = λ−1 if g = λx0.

Finally, if degGn = 2n+1(d− 1)− (d− 2), for n = 1, 2, then, by Theorem 6.5,

dG1 = λ−1(f ′ + g′y0) dy0 + y0dy0,

dG2 = (λ−3(f ′ + g′y0)3 + y3
0)dy0 +G1 dG1,

where λ is the (non-zero) coefficient of x0 in g. By Proposition 9.1,

dF1 = (λ−1 g + x0) dx0,

dF2 = (λ−3 g3 + x3
0) dx0 + F1 dF1.

Hence, we just take h = λ−1.

�

12. The Genus 2 Case

In this section we will do some explicit calculations with curves of genus two (i.e., d = 5).

Besides illustrating the theory with a concrete example, another goal here is to show how

the condition that g = x0 seems to be sufficient to obtain a lift of points with the degrees

of the Gn’s equal to the lower bounds. Note that, by Proposition 6.6, it is necessary only

to have deg g = 2, but we further choose to have g = x0 so that we can also obtain minimal

degree for F1, as in Proposition 6.9. (Observe that the condition g = x0 makes the Jacobian

of C non-ordinary.)

Let

C/k : y2
0 + x0y0 = x5

0 + d0x
4
0 + e0x

3
0 + f0x

2
0 + g0x0 + h0. (12.1)

Since computations in such generality would be too long, we first simplify, via isomorphisms,

equation (12.1). Note that, as observed earlier, the degrees are not necessarily invariant

under isomorphisms!

An isomorphism of curves of genus 2 that preserve the point at infinity is given by a

change of variables of the form

x̃0 7→ α2x0 + β, (12.2)

ỹ0 7→ α5y0 + γx2
0 + δx0 + ε, (12.3)
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where α, β, γ, δ, ε ∈ k and α 6= 0. Therefore, clearly if

C̃/k : ỹ2
0 + (ã0x

2
0 + b̃0x0 + c̃0)ỹ0 = x̃5

0 + d̃0x̃
4
0 + ẽ0x̃

3
0 + f̃0x̃

2
0 + g̃0x̃0 + h̃0 (12.4)

is isomorphic to C, then ã0 = 0, and again we can make b̃0 = 1 and c̃0 = 0. Hence, in order

for two isomorphic curves have this same form (i.e., g = x0), we must have β = 0 and α

must be a cubic root of unity. A tedious computation gives us:

d̃0 = αγ2 + α2d0;

ẽ0 = α2γ + αe0;

f̃0 = αδ + α2δ2 + f0;

g̃0 = ε+ α2g0;

h̃0 = ε2 + αh0.

Comparing the equations for d̃0 and ẽ0, we obtain

γ = (αd0 + α2d̃0)1/2 = α2e0 + αẽ0, (12.5)

and comparing the equations for g̃0 and h̃0, we obtain

ε = (αh0 + h̃0)1/2 = α2g0 + g̃0. (12.6)

Observe that the curves are non-singular if, and only if, ∆ def= g2
0 + h0 and ∆̃ def= g̃2

0 + h̃0 are

non-zero. But equations (12.5) and (12.6) imply

d̃0 + ẽ20 = α2(d0 + e20),

∆̃ = α∆

Therefore, clearly

j1
def=

d0 + e20
∆2

=
d̃0 + ẽ20

∆̃2

and

j2
def= ∆3 = ∆̃3

(remember that α is cubic root of unity) are invariants for curves of this particular form.

Conversely, if we have curves C and C̃ given by equations (12.1) and (12.4), with ã0 = 0,

b̃0 = 1 and c̃0 = 0, such that
d0 + e20

∆2
=
d̃0 + ẽ20

∆̃2

and

∆3 = ∆̃3,
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then the curves are isomorphic, either over k itself or over a degree two extension of k: just

let (as in equations (12.2) and (12.3)):

α
def= ∆̃/∆

β
def= 0

γ
def= α2e0 + αẽ0

δ
def= a solution of α2X2 + αX + (f0 + f̃0) = 0

ε
def= α2g0 + g̃0.

Hence, the invariants j1, j2 ∈ k, with j2 6= 0, determine a curve of genus 2 with g = x0

up to isomorphism, and given such any j1, j2 ∈ k, with j2 6= 0, the curve

y2
0 + x0y0 = x5

0 + ((j1j
2/3
2 )1/2)x3

0 + j
1/3
2

is isomorphic (over k̄) to a curve with invariants j1 and j2. So, we will consider here only

curves given by equations of the form

y2
0 + x0y0 = x5

0 + e0x
3
0 + h0

(with h0 6= 0). The computation, up to the fourth coordinate of the Witt vectors, of the

absolute minimal degree lifting with respect to y for a curve given by the above equation

yields a lifting (over W4(k)) given by

C/W4(k) : y2 + (ax2 + x)y = x5 + dx4 + ex3 + fx2 + gx + h,

where a = (a0, a1, a2, a3), . . . ,h = (h0, h1, h2, h3), are given by

a = (0, 0, e0 + e21 + h0, a3),

d = (0, e0 + h0, d2, d3),

e = (e0, e1, e2, e3),

f = (0, f1, f2, f3),

g = (0, g1, g2, g3),

h = (h0, h
2
0, g1 + h4

0, g
4
1h

4
0 + h8

0 + f4
1h

8
0),

with a3, d2, d3, e1, e2, e3, f1, f2, f3, g1, g2, g3 ∈ k arbitrary, and a lift of points is given by

ν(x0, y0) = ((x0, F1, F2, F3), (y0, G1, G2, G3)),

where F1 ∈ k (in fact, F1 = h0, as in section 10), degG1 = 13, degF2 = 20, degG2 = 29,

degF3 = 28 and degG3 = 61, and hence, for i = 0, . . . , 3, degGi = (2i+3 − 3), i.e., the Gi’s

have the minimal possible degrees.
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It seems worth mentioning that if we just want the lift with minimal degrees modulo

4, then you do not need d1 = e0 + h0 as in the formulas above. In this case d1 could be

arbitrary. The condition on d1 is imposed so that we are able to obtain G2 with order 29.

In the same way, if you only want the minimal degrees modulo 8, you can have any a2 ∈ k,
but if you want degG3 = 61, then you have to impose the condition that a2 = a0 + e21 + h0

as above. So, to obtain degG4 = 125, if at all possible, one might have to impose conditions

on the constants left as arbitrary here.

Also, observe that, without extra conditions, the lifting of the curve is not unique up to

isomorphisms!

As stated in Theorem 6.13, similar computations with ordinary elliptic curves (genus 1)

show we can also obtain lifts of points with the degrees of Gi’s equal to the lower bound.

It seems then that the condition g = x0 might also to be sufficient to have a lift with Gi’s

having degrees equal to the lower bounds.

13. Examples of Codes

In this section we exhibit some codes constructed with liftings of hyperelliptic curves. We

will deal only with the case when the characteristic of the field and the length of the Witt

vectors are both 2, i.e., when, with the notation of section 2, pl = 4. (Also, as observed

before, we consider only divisors of the form nP∞.) It is worth noticing that a few examples

for genus 1 were computed by Voloch and Walker in [VW00].

Let q = 8 and F8 = F2[α], where α3 + α+ 1 = 0. Consider the curve

C : y2
0 + y0 = x5

0 + x3
0 + x0,

with lifting

C : y2 + ((0, 1)x2 + (0, 1)x + (1, 1))y = x5 + (1, 1)x3 + (1, 0)x,

and the minimal degree lift of points from C to C with respect to y

F1 = x0 + 1,

G1 = x5
0 y0 + x4

0 y0 + x3
0 y0 + x2

0 y0 + x0 y0 + x5
0 + x3

0 + x0 + 1.

(Observe that, in this case, C is not an absolute minimal degree curve over C, so ν is not

an absolute minimal degree lift of points.)
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Then, considering functions in L(5P∞) and following the procedure described in section

2, one obtains a code with the following generating matrix (over Z/4):

1 0 0 0 1 3 0 3

0 1 0 0 3 1 1 2

0 0 1 0 3 0 3 1

0 0 0 1 0 3 3 1

0 0 0 0 2 0 0 2

0 0 0 0 0 2 0 2

0 0 0 0 0 0 2 2


,

The corresponding binary code has length 16, 211 codewords and minimum weight 4. Ac-

cording to N. Sloane’s site,

http://www.research.att.com/~njas/codes/And/,

this is the size of the largest possible non-linear binary code with this length and minimum

distance. Note also that, in this particular case, there is a linear code with the same

parameters.

One can also use only a few functions in L(nP∞) (for some fixed n) to generate the code

instead of all functions. We were then able to find a few codes matching the best known

linear code for a fixed length and size. For example, again over F8, consider the curve

C : y2
0 + α6 x0 y0 = x5

0 + α2 x4
0 + α4 x2

0 + α5

with lifting

C : y2 + (α6, 0)x y = x5 + (α2, α)x4 + (α4, 0)x2 + (α5, α5),

and the minimal degree lift of points from C to C with respect to y (which turns out to be

also a minimal degree lift with respect to x in this case) given by

F1 = x0 y0 + α3 x3
0 + x2

0 + α2,

G1 = (α2 x7
0 + α3 x4

0 + α5 x3
0 + α2 x2

0 + α4 x0) y0+

α5 x9
0 + α2 x8

0 + α4 x7
0 + α4 x6

0 + α5 x5
0 + α2 x3

0 + x2
0 + αx0 + α6.

If we now use only the functions of the form

h = c0 + c1 x + c2 y, c0, c1, c2 ∈ W2(F8)

http://www.research.att.com/~njas/codes/And/
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in the construction of the code (so we discard functions in L(5P∞) involving x2), then we

obtain the generating matrix

1 0 0 0 0 0 0 1 3 1 2 1 2

0 1 0 0 0 0 0 3 0 2 0 1 3

0 0 1 0 0 0 0 3 1 0 3 1 1

0 0 0 1 0 0 0 1 1 2 2 0 0

0 0 0 0 1 0 0 2 1 0 3 0 3

0 0 0 0 0 1 0 2 2 3 2 1 1

0 0 0 0 0 0 1 1 1 1 1 1 3


,

and the resulting binary code has length 26, 214 codewords and minimum weight 6, which

according to A. Browuer’s web site

http://www.win.tue.nl/~aeb/voorlincod.html,

is the minimum weight of the best known linear code with that size and length. (The size

of the best non-linear code with this length and minimum weight is 215.)

Finally, one can also use the results from the previous section, where we computed abso-

lute minimal degree liftings, to construct codes. If we have, again over F8,

C : y2
0 + x0 y0 = x5

0 + α2 x3
0 + α6,

then an absolute minimal degree curve modulo 4 over C, with respect to both x and y, is

given by (as in the previous section)

C : y2 + x y = x5 + (0, α5)x4 + (α2, 1)x3 + (0, 1)x2 + (0, 1)x + (α6, α5),

and we have an absolute minimal degree lift of points

F1 = α6,

G1 = (x4
0 + α2 x2

0 + x0) y0 + α4 x6
0 + x5

0 + x4
0 + α2 x3

0 + αx2
0 + α2.

(Observe that the proof of Proposition 6.9 gives us a method to explicitly find C, F1 and

G1.) Using again only functions generated by {1,x,y}, one obtains the code given by the

generating matrix 

1 0 0 0 0 0 0 2 2 3 1

0 1 0 0 0 0 0 1 1 0 3

0 0 1 0 0 0 0 1 2 0 1

0 0 0 1 0 0 0 1 0 1 3

0 0 0 0 1 0 0 1 1 3 1

0 0 0 0 0 1 0 1 0 0 2

0 0 0 0 0 0 1 2 3 2 2


.

http://www.win.tue.nl/~aeb/voorlincod.html
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This code has then length 22, 214 codewords and minimum weight 4, which is the minimum

weight for the best linear code with this length and size. (The largest non-linear code with

the same length and minimum weight is 9 · 213.)
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