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Abstract. The main goal of this paper is to analyze the properties of lifts of hyperelliptic curves

y2
0 = f(x0) over perfect fields of characteristic p > 2 (to hyperelliptic curves over the ring of Witt

vectors) that have lifts of points whose coordinate functions have minimal degrees. It is shown

that, when trying to minimize the degrees of the x-coordinate, the (n+1)-th entry, say Fn, can be

taken to be a polynomial in x0 such that (dpn
− (d − 2))/2 ≤ deg Fn ≤ (dpn + (d − 2))/2, where

d = deg f(x0). Besides upper and lower bounds for the degrees, other topics discussed include a

necessary condition to achieve the lower bounds and lifting the Frobenius. Computational aspects

are also considered and the case of elliptic curves is analyzed in more detail. An explicit formula for

derivatives of coordinate functions of the elliptic Teichmüller lift is proved, namely dFn/dx0 = 0,

if p = 2, and dFn/dx0 = A(pn
−1)/(p−1) ypn

−1
0 −

Pn−1
i=0 F

(pn−i
−1)

i dFi/dx0, if p ≥ 3, where A is the

Hasse invariant of the curve. Finally, we establish a connection between minimal degree liftings

and Mochizuki’s theory of “canonical liftings” in the case of genus 2 curves.

1. Introduction

Let k be a perfect field of characteristic p > 0. We say that an elliptic curve E/k is ordinary

if the p-torsion subgroup of E is isomorphic to Z/pZ. Associated to an ordinary elliptic curve E,

there exists a unique (up to isomorphisms) elliptic curve E over the ring W(k) of Witt vectors over

k, called the canonical lift of E, and a map τ : E(k̄) → E(W(k̄)), called the elliptic Teichmüller

lift, characterized by the following properties:

(1) the reduction modulo p of E is E;

(2) if σ denotes the Frobenius of both k and W(k), then the canonical lift of Eσ (the elliptic

curve obtained by applying σ to the coefficients of the equation that defines E) is Eσ;

(3) τ is an injective group homomorphism;
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(4) let φ : E → Eσ denote the p-th power Frobenius; then there exists a map φ : E → Eσ,

such that the diagram

E(W(k̄))
φ

−−−−→ Eσ(W(k̄))

τ

x





x




τσ

E(k̄)
φ

−−−−→ Eσ(k̄)

commutes. (In other words, there exists a lift of the Frobenius.)

This concept of canonical lifting of elliptic curves was first introduced by Deuring in [Deu41]

and then generalized to Abelian varieties by Serre and Tate (see [LST64]). Apart from being of

independent interest, this theory has been used in many applications, such as counting rational

points in ordinary elliptic curves, as in Satoh’s [Sat00], counting torsion points of curves of genus

g ≥ 2, as in Poonen’s [Poo01] and Voloch’s [Vol97], and coding theory, as in Voloch/Walker’s

[VW00]. This last reference, together with [VW99] (by the same authors) and Mochizuki’s [Moc96],

are the main motivation for this paper.

Before we make it clearer what we are going to pursue here, we need to introduce some more

notation. We can identify E/W(k) with its Greenberg transform G(E)/k, which is an (infinite

dimensional) scheme over k, and we can then view τ as a morphism of schemes over k. Thus,

τ(x0, y0) = (x0, F1, F2, . . . , y0, G1, G2, . . . ),

where Fi, Gi ∈ k(x0, y0). One can prove that the Fi’s are in fact in k[x0], and the Gi’s, for p 6= 2,

can be written as Gi = y0Hi, with Hi ∈ k[x0].

The error-correcting codes constructed by Voloch and Walker in [VW00] (using canonical liftings)

have parameters that depend on the order of poles of the Fi’s and Gi’s at the point at infinity O

(or equivalently, on the degrees of the Fi’s and Hi’s). In [Fin02] precise bounds for the orders were

found:

Theorem 1.1. We have

ordO Fn ≥ −(n+ 2)pn + npn−1, ordO Gn ≥ −(n+ 3)pn + npn−1.

for all n ≥ 0. For p > 2, those bounds may be written

degFn ≤
(n+ 2)pn − npn−1

2
, degHn ≤

(n+ 3)pn − npn−1 − 3

2
.

Moreover, equality does not occur for ordO Fn (or for degFn) if, and only if, p divides (n+1), and

the equality does not occur for ordOGn (or for degHn) if, and only if, p divides (n+ 1)(n+ 2)/2.

On the other hand, one can also use other lifts, different from the canonical, to construct codes.

When estimating the paramenter of these codes, lifts with poles of smaller order, or equivalently,

smaller degrees, give better bounds. In the cases dealt with in [VW00], only the reduction modulo

p2 of E/W(k) was considered. In that case, using the canonical lift instead of any other, was the
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best possible choice to keep the degrees small: Proposition 4.2 in [VW00] tells us that if we have any

lift of points ν : (x0, y0) 7→ ((x0, F1), (y0, G1)) from the affine part of the elliptic curve E/k (possibly

non-ordinary) to the affine part of the elliptic curve E/W2(k), satisfying ordO F1 ≥ (−3p + 1) or

ordOG1 ≥ (−4p + 1), then E is ordinary, E is the canonical lift of E (modulo p2) and ν is the

elliptic Teichmüller lift.

But one can also use lifts modulo higher powers of p to construct codes. Moreover, only the

affine part of the curve is really relevant. Although one might have expected that the canonical

lift and elliptic Teichmüller lift would be again the best choices, it turns out that there are other

lifts which yield even smaller degrees. Section 5 of [Fin02] presents a lift of points

ν : (x0, y0) 7→ ((x0, F1, F̃2), (y0, G1, G̃2))

from the affine part of the elliptic curve

E/F5 : y2
0 = x3

0 + x0

to the affine part of its canonical lift

E/W3(F5) : y2 = x3 + x

with deg F̃2 = 37 < degF2 = 45 (and deg H̃2 = degH2 = 56), where

τ : (x0, y0) 7→ ((x0, F1, F2), (y0, G1, G2))

denotes the elliptic Teichmüller lift. (Observe that, in contrast with τ , the lift ν cannot be extended

to the point at infinity.)

We thus see that there are lifts which yield better bounds for the parameters of codes associated

to them, and which therefore possibly give better codes. Since lifts with minimal degrees give us

the best bounds, in this paper we study the properties of such lifts.

Similar ideas to those used in the case of elliptic curves can be applied to obtain lifts of hy-

perelliptic curves, and these curves may also be used in the construction of codes. (See [VW99]).

Moreover, the results obtained here can be used to develop an algorithm to find the liftings of the

curves as well as the lifts of points, and then the associated codes can be effectively constructed.

Throughout this paper, we will restrict ourselves to the case p > 2. The case p = 2 (for which

similar results hold, and more concrete applications to coding theory might exist) requires different

techniques and will be dealt with elsewhere.

Since we will be using hyperelliptic curves, throughout this paper we will use the following

notation: let k be a perfect field of characteristic p > 2 and C be a hyperelliptic curve over k, given

by

C/k : y2
0 = f(x0), (1.1)
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where f is a monic polynomial of degree d ≥ 3, with (f, f ′) = 1. (Here f ′ denotes the derivative of

f .) Note that although we write only the affine equation for C, we think of C as a projective curve,

i.e., the unique smooth compactification of the affine curve given by equation (1.1). We shall refer

to the affine curve as the affine part of C.

Let also

C/W(k) : y2 = f(x), (1.2)

where f is a monic polynomial that reduces to f modulo p, i.e., C is a lift of C. (Again, C is a

projective curve.) Also, let U denote the affine part of C and U the affine part of C.

Definition 1.2. Let C and C be as above. A hyperelliptic lift (of points) from C to C is a regular

map ν : U(k̄) → U(W(k̄)) (so it is a map between the affine parts only) given by

ν(x0, y0) = ((x0, F1, F2, . . . ), (y0, G1, G2, . . . )), (1.3)

such that Gi = y0Hi and Fi,Hi ∈ k[x0] for all i. We also write F0
def
= x0, G0

def
= y0, H0

def
= 1.

Observe that saying that ν is hyperelliptic is equivalent to saying that it commutes with the

hyperelliptic involutions of C and C.

We will be looking for lifts of points whose coordinate functions have poles of small order at

infinity. For simplicity we shall refer to “degrees” instead of orders of poles, since we will be dealing

with polynomials. But since we have polynomials in x0 and y0, to be precise we have to define

deg x0
def
= 1 and deg y0

def
= d/2, since y2

0 = f(x0). (We will deal mostly with polynomials in x0.)

It also seems that the best way to obtain these small degrees is to proceed coordinate by coordi-

nate, i.e., to first obtain the minimal degree for the second coordinate, and then, with the second

coordinate fixed, to obtain minimal degree for the third, and so on.

We will consider here only hyperelliptic lifts of points. Although this assumption greatly simpli-

fies our analysis, it might seem to defeat the purpose of obtaining minimal possible degrees. But,

in this spirit of obtaining minimal degrees coordinate by coordinate, Proposition 5.2 will partly

justify why this is not entirely bad. Also, the last few paragraphs of section 6 further clarifies this

choice.

We may consider two different notions of minimal degree: one in which the curves C and C

are fixed a priori, and another in which we only fix C and want to find a curve C which has a

hyperelliptic lift of points having minimal degrees among all other choices of curves that reduce to

C modulo p. We will make these two notions precise in the following two definitions below.

Definition 1.3. Let C and C be curves given by equations (1.1) and (1.2) respectively. A minimal

degree lift from C to C/W2(k) with respect to x (resp., y) is a hyperelliptic lift of points

ν(x0, y0) = ((x0, F1), (y0, G1)),
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where degF1 (resp., degH1) is minimal. Inductively, a minimal degree lift from C to C/Wn+1(k)

with respect to x (resp., y) is a hyperelliptic lift of points

ν(x0, y0) = ((x0, F1, . . . , Fn), (y0, G1, . . . Gn)),

whose reduction modulo pn is a minimal degree lift from C to C/Wn(k), and degFn (resp., degHn)

is minimal. Also, if we say “minimal degree lift from C to C/Wn+1(k)” without specifying with

respect to what coordinate, we will be referring to the minimal degree lift with respect to x.

Definition 1.4. Let C be a hyperelliptic curve given by (1.1). An absolute minimal degree curve

modulo p2 over C (with respect to x) is a curve C/W2(k) (given by (1.2)) which reduces to C

modulo p, and which satisfies the following property. Let

ν(x0, y0) = ((x0, F1), (y0, G1)),

be a minimal degree lift from C to C, and let C̃/W2(k) be any curve that reduces to C modulo p.

Then for any minimal degree lift

ν̃(x0, y0) = ((x0, F̃1), (y0, G̃1)),

from C to C̃, we have deg F̃1 ≥ degF1.

Inductively, an absolute minimal degree curve modulo pn+1 over C (with respect to x) is a curve

C/Wn+1(k) whose reduction modulo pn is an absolute minimal degree curve modulo pn over C,

satisfying the following property. Let

ν(x0, y0) = ((x0, F1, . . . , Fn−1, Fn), (y0, G1, . . . , Gn−1, Gn)),

be a minimal degree lift from C to C, and let C̃/Wn+1(k) be any curve whose reduction modulo

pn is equal to the reduction modulo pn of C. Then, for a minimal degree lift

ν̃(x0, y0) = ((x0, F1, . . . , Fn−1, F̃n), (y0, G1, . . . , Gn−1, G̃n)),

from C to C̃, we have deg F̃n ≥ degFn. In this case we call the minimal degree lift ν from C to C

an absolute minimal degree lift of points (modulo pn+1).

We also have the analogous definitions with respect to y, rather than x.

Remark. Note that in Definitions 1.3 and 1.4, the lift of points ν is hyperelliptic, and is therefore

only a lift from the affine part of C to the affine part of C.

2. Statement of Main Results

We will now describe how this paper is organized and state its main results.

In section 3 we introduce the notation and state some results that will be used in the following

sections. In section 4 we deal with liftings of powers of the Frobenius and, as a corollary, we
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establish a formula for the derivatives of the entries of the x-coordinate of the elliptic Teichmüller

lift. Namely, we prove:

Theorem 2.1. Let E be an ordinary elliptic curve and E be its canonical lift. Let τ : E(k̄) →

E(W(k̄)) be the elliptic Teichmüller lift

τ(x0, y0) = ((x0, F1, . . . ), (y0, G1, . . . )).

Then, for n ≥ 1,
dFn

dx0
= 0

if p = 2, and

dFn

dx0
= A−(pn−1)/(p−1) ypn−1

0 − xpn−1
0 −

n−1
∑

i=1

F
(pn−i−1)
i

dFi

dx0

if p > 2, where A is the Hasse invariant of E.

We observe that these derivatives allow us to create an algorithm, similar to the one described

in the last section of [Fin02], to compute the canonical lift and elliptic Teichmüller lift modulo any

power of p, although a generalization of Theorem 5.3 in [Fin02] (restated here as Theorem 3.3),

would greatly improve such algorithm.

In section 5 we find upper bounds for the lifts (of hyperelliptic curves) with minimal degrees.

We prove the following result:

Proposition 2.2. Let C/k and C/W(k) be curves given by equations (1.1) and (1.2). Then there

exists a unique minimal degree lift

ν = ((x0, F1, F2, . . . ), (y0, y0H1, y0H2, . . . )),

from C to C with respect to x, and we have

degFn ≤
dpn + (d− 2)

2

and

degHn ≤
(n(d− 2) + d)pn + n(d− 2)pn−1 − d

2
,

for all n > 0.

We also prove the corresponding result for lifts with respect to y:

Proposition 2.3. Let the hypotheses and notation be as in Proposition 2.2, and suppose in addition

that p does not divide (d− 1). Then, there exists a unique minimal degree lift

ν = ((x0, F1, F2, . . . ), (y0, y0H1, y0H2, . . . )),

from C to C with respect to y, and we have

degHn ≤ (d− 1)pn − 1
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and

degFn ≤
(n(d− 2) + 2)pn + n(d− 2)pn−1

2
,

for all n > 0.

In section 6 we prove lower bounds for the absolute minimal degree lifts:

Theorem 2.4. Let

ν = ((x0, F1, . . . , Fn), (y0, G1, . . . , Gn)),

where n ≥ 1, be a lift of points (not necessarily hyperelliptic) from the affine part of C, given by

equation (1.1), to the affine part of a lift C, given by equation (1.2), where Fi ∈ k[x0] with

degFi =
dpi − (d− 2)

2
,

for i = 0, . . . , (n− 1). Then, degFn ≥ (dpn − (d− 2))/2. If equality holds, then

dFn

dx0
= A−(pn−1)/(p−1)f(x0)

(pn−1)/2 −
n−1
∑

i=0

F pn−i−1
i

dFi

dx0
.

where A is the (necessarily non-zero) coefficient of xp−1
0 in f(x0)

(p−1)/2.

Thus, Theorem 2.4 gives lower bounds for the absolute minimal degree lifts with respect to x.

The best one can expect is to have

degFn =
dpn − (d− 2)

2
(2.1)

for all n ≥ 1. It also gives us a necessary condition to achieve these lower bounds: in order for

the lower bound to be attained when n = 1, it is necessary for A−1f(x0)
(p−1)/2 − xp−1

0 to be a

derivative. For this to occur, the coefficient of xrp−1
0 in f(x0)

(p−1)/2 must be equal to zero for r 6= 1,

and the coefficient of xp−1
0 must be non-zero. Also the formula for the derivative of Fn helps us to

explicitly compute this lift when it exists.

In section 7 we analyze minimal degree lifts in the case of elliptic curves, and prove that, modulo

p3, we can achieve the lower bounds above. (Theorem 7.2.) We also relate the minimal degree lift

with the elliptic Teichmüller lift.

In order to describe the results of section 8, we require the following definition:

Definition 2.5. Let C/k and C/Wn(k) be curves such that the reduction modulo p of C is C

and for which we have a lift of points ν : U(k̄) → U(W(k̄)) between the affine parts. Let also

φ : C → Cσ denote the Frobenius map in characteristic p. We say that φ : U → U σ is a lift of the

Frobenius associated to ν if it is a map that makes the diagram

U(Wn(k̄))
φ

−−−−→ Uσ(Wn(k̄))

ν

x





x




νσ

U(k̄)
φ

−−−−→ Uσ(k̄)
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commute.

It is shown in section 4 that, modulo p2, any lift of points has an associated lift of the Frobenius.

The main result of section 8 gives a necessary and sufficient condition for a lift of the Frobenius

modulo p3 associated to a lift of points to exist. In order to be more precise, we need to establish

some further notation.

Definition 2.6. Let g(x0, y0) ∈ k[x0, y0] and g(x,y) ∈ W2(k) be the lift of g defined by applying

the Teichmüller lift to the coefficients of g, i.e., if λ is a coefficient of some monomial of g, then the

corresponding monomial of g has coefficient (λ, 0). (We shall refer to such lift as the Teichmüller

lift of the polynomial g.) We define

ψ(g)
def
= ψ(g)

def
= reduction modulo p of

gσ(xp,yp) − g(x,y)p

p
.

Remark. One can define ψ(g) without lifting g, with a recursive definition: if g is a monomial,

define ψ(g) = 0; if not let m(x0, y0) = λxi
0y

j
0 be a monomial of g, so that g −m has one term less

than g. If

b(r)
def
=

1

p

(

p

r

)

, for r ∈ {1, . . . , (p− 1)},

(and hence the b(r)’s are integers) then we can define

ψ(g)
def
= ψ(g −m) −

p−1
∑

r=1

b(r)(g −m)r mp−r.

The main result of section 8 may be stated as follows:

Proposition 2.7. Let C/k and C/W3(k) be curves given by equations (1.1) and (1.2), and let

ν = ((x0, F1, F2), (y0, G1, G2))

be a hyperelliptic lift with
dF1

dx0
= A−1f(x0)

(p−1)/2 − xp−1
0 ,

where A is the coefficient of xp−1
0 in f(x0)

(p−1)/2. Then, there is a lift of the Frobenius associated

to ν if, and only if,

F2 − x
p(p−1)
0 F1 − ψ(F1) −

(

F ′
1

)p
F1

and

G2 − y
p(p−1)
0 G1 − ψ(G1) −

(

∂G1

∂x0

)p

F1 −

(

∂G1

∂y0

)p

G1

are both p-th powers, say P (x0)
p and Q(x0, y0)

p, respectively. In this case, the lift of the Frobenius

is given by

φ(x,y) = (xp + pF 1 + p2P ,yp + pG1 + p2Q),

where F 1 and G1 are the Teichmüller lifts of F1 and G1 respectively, and P and Q are lifts of P

and Q to W3(k)[x] and W3[x,y] respectively.
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We then use this proposition in section 9 to prove that minimal degree lifts satisfying the lower

bounds in section 6, or more precisely, lifts for which equation (2.1) holds for i = 1, 2, have a lift

of the Frobenius modulo p3. (Theorem 9.2.)

In section 10 we use this theory of minimal degree lifts to give examples of Mochizuki lifts for

curves of genus 2 in characteristic 3: we observe that if the genus of the curve is greater than 1,

there is no “canonical lift”, i.e., we cannot lift the Frobenius. (See [Ray83].) On the other hand,

Mochizuki has developed a theory of canonical liftings of higher genus curves (in [Moc96]), where

there exists liftings of the Frobenius with certain singularities at finitely many points, which are

referred to as the supersingular points. In this paper, a Mochizuki lift (modulo p2) will satisfy the

condition of the statement of Proposition 4.10 on pg. 1114 of [Moc96], i.e., the height of the lift of

the Frobenius will be less than or equal to one minus the genus of the curve. (We define the height

of the lift of the Frobenius precisely on Definition 10.2.) Note that a Mochizuki lift is not unique.

Mochizuki’s theory does not have many known examples, and the results obtained in this paper

allows us to explicitly find examples for curves of genus 2. More precisely, in sections 10 and 11

we prove:

Theorem 2.8. Let k be a perfect field of characteristic 3 and C a smooth, proper, geometrically

connected curve of genus 2 over k.

(1) Any Mochizuki lift of C to W2(k) determines an absolute minimal degree curve modulo

9 over the affine curve U obtained by removing the supersingular points associated to the

Mochizuki lift from C.

(2) Suppose that k is algebraically closed. Then if C admits a Mochizuki lift over W2(k), then

C can be given by

y2
0 = x6

0 + a0x
4
0 + x2

0 + b0x0 + c0,

where a0, b0, c0 ∈ k, and the supersingular points associated to the Mochizuki lift are the

two points at infinity. In particular, if the moduli of C are sufficiently general, then C may

be written in that form.

(3) Suppose that C is given by the equation

y2
0 = x6

0 + a0x
4
0 + x2

0 + b0x0 + c0,

where a0, b0, c0 ∈ k. Then one can compute an explicit example of a Mochizuki lift of C

modulo 9 (by computing a minimal degree lift). Moreover, the following three conditions

are equivalent:

(a) this Mochizuki lift is Mochizuki-ordinary;

(b) the Jacobian of the curve C is ordinary;

(c) a0 6= 0.
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3. Definitions and Previous Results

In this section we will introduce notation and results from [Fin02] that will be used in the rest

of the paper.

First we recall that, for p 6= 2, an elliptic curve given by

E/k : y2
0 = f(x0),

where f(x) is a monic cubic, is ordinary if, and only if, the coefficient of xp−1
0 of f (p−1)/2 is non-zero.

We shall denote this coefficient by A and call it the Hasse invariant of E.

We now review some facts about Witt vectors. Let p be a prime, and and for each non-negative

integer n consider

Wn(X0, . . . , Xn)
def
= Xpn

0 + pXpn−1

1 + · · · + pn−1Xp
n−1 + pnXn,

the corresponding Witt polynomial. Then, there exist polynomials Sn, Pn ∈ Z[X0, . . . , Xn, Y0, . . . , Yn]

satisfying:

Wn(S0, . . . , Sn) = Wn(X0, . . . , Xn) +Wn(Y0, . . . , Yn) (3.1)

and

Wn(P0, . . . , Pn) = Wn(X0, . . . , Xn) ·Wn(Y0, . . . , Yn). (3.2)

(See [Ser79].)

If a = (a0, a1, . . . ) and b = (b0, b1, . . . ) are Witt vectors,

a + b
def
= (S0(a0, b0), S1(a0, a1, b0, b1), . . . )

and

a · b
def
= (P0(a0, b0), P1(a0, a1, b0, b1), . . . ).

Since we will deal with Witt vectors over fields of characteristic p, we may use S̄n, P̄n ∈

Fp[X0, . . . , Xn, Y0, . . . , Yn] respectively, defined to be the reductions modulo p of Sn, Pn ∈ Z[X0, . . . , Xn, Y0, . . . , Yn],

to define the addition and the product of Witt vectors.

Now, let K be a field of characteristic p > 0 and let v : K → R∪{∞} be a valuation of the field

K. (In the applications below, we will choose K to be the function field of a curve over k and v to

be the order of vanishing at a point.) For e, r ≥ 0, define:

Ur(e)
def
=
{

s = (s0, s1, . . . ) ∈ W(K)× | v(sn) ≥ pn(v(s0) − ne), for n ≤ r
}

.

and

U(e)
def
=
{

s = (s0, s1, . . . ) ∈ W(K)× | v(sn) ≥ pn(v(s0) − ne), ∀n > 0
}

.

(So, U(e) =
⋂

r≥0 Ur(e).)

Lemma 3.1. The sets U(e) and Ur(e) are subgroups of W(K)×.
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Proof. The proof that U(e) is a group can be found in [Fin02] (Lemma 2.2) and can be easily

adapted to prove that the same is true of Ur(e). �

A careful examination of the proof of Lemma 2.2 in [Fin02] also gives us the following lemma:

Lemma 3.2. Let s, t ∈ Ur−1(e). Then, the (r + 1)-th coordinate of s · t is given by

tp
r

0 sr + spr

0 tr + . . . ,

where all the omitted terms have valuation greater than or equal to pn(v(s0 t0) − en).

Proof. The (r + 1)-th coordinate of s · t is given by

P̄r(s0, . . . , sr, t0, . . . , tr) = tp
r

0 sr + spr

0 tr + . . . ,

where the omitted terms are monomials in s0, . . . , sr−1, t0, . . . , tr−1.

The proof of Lemma 2.2 in [Fin02] bounds each monomial appearing in

P̄r(s0, . . . , sr, t0, . . . , tr).

In this case, we don’t have the bounds for the sr and tr, but the bounds for s0, . . . , sr−1 and

t0, . . . , tr−1 are enough to bound the valuations of the omitted terms.

�

The next theorem gives an important characterization of the canonical lift modulo p3. It is also

helpful in the explicit computation of such lifts.

Theorem 3.3. Suppose that p 6= 2, 3 and that E/W3(k) is an elliptic curve whose reduction

modulo p is E/k. Suppose also that there exists a lift of points

τ(x0, y0) = ((x0, F1, F2), (y0, G1, G2)),

between the affine parts of E and E, such that, modulo p2, E and τ are the canonical lift and elliptic

Teichmüller lift respectively. Then E and τ are also the canonical lift and the elliptic Teichmüller

lift modulo p3 if, and only if,

deg

(

xp2

0 F2 −
3

4
F 2p

1

)

≤
5p2 − 1

2
.

If this inequality holds, then it is in fact an equality.

Proof. This is Theorem 5.3 from [Fin02]. �
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4. Liftings of the Frobenius

In [VW00] and [Fin02], the derivatives of F1 and F2 (from the elliptic Teichmüller lift) were

computed. In order to do this, the reduction modulo p of 1/pφ∗(dx/y) and (1/pφ∗)2(dx/y) were

computed, where φ denotes the lift of the Frobenius. The main goal of this section is to obtain more

general results that will allow us to deduce the general formula for the derivative of Fn from the

elliptic Teichmüller lift stated in Theorem 2.1, and to give similar results for hyperelliptic curves.

Theorem 4.1. Let k be a perfect field of characteristic p > 0 and

U/k : g(x0, y0) = 0

be an affine curve in A
2. Let

U/Wn+1(k) : g(x,y) = 0

be an affine curve with reduction U , i.e., g reduces to g modulo p. If we have a lift of points

ν : U(k̄) → U(Wn+1(k̄)) given by

ν(x0, y0) = ((x0, F1, . . . , Fn), (y0, G1, . . . , Gn)),

with Fi, Gi ∈ k[x0, y0], then we have a lift φn : U → Uσn
of the pn-th power Frobenius φn : U →

Uσn
associated to ν (as in Definition 2.5) given by

φn(x,y)
def
= (xpn

+ pF pn−1

1 + · · · + pnF n,y
pn

+ pGpn−1

1 + · · · + pnGn),

where F i,Gi ∈ Wn+1(k)[x,y], and F i (resp., Gi) is a lift of Fi ∈ k[x0, y0] (resp., Gi).

Proof. We need to prove that the map φn above is well defined. It suffices to show that the map

is well defined for the Greenberg transforms G(U ) and G(U σn
). Writing x = (x0, . . . , xn) and

y = (y0, . . . , yn),

g(x,y) = (g0(x0, y0), g1(x0, x1, y0, y1), . . . , gn(x0, . . . , xn, y0, . . . , yn)).

So, G(U ) is the defined as the common zeros of the equations g0, . . . , gn in A
2n+2. (Note that

g0 = g.) Since ν is a (well defined) lift, we have that

ν∗g1, . . . , ν
∗gn ≡ 0 (mod (g0)). (4.1)

(Observe that,

ν∗gi = gi(x0, F1, . . . Fi, y0, G1, . . . , Gi),

for i = 0, . . . n.)

If v = (v0, . . . , vn) is a Witt vector of length n + 1, then pivpn−i
is the Witt vector whose the

(i + 1)-th coordinate is vpn

0 and whose other coordinates are zero. So, the map φn defined in the

statement is such that

φn = ((xpn

0 , F pn

1 , . . . , F pn

n ), (ypn

0 , Gpn

1 , . . . , Gpn

n )). (4.2)
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To prove that φn is well defined, it suffices to prove that the coordinates of gσn
(φn(x,y)) are

congruent to zero modulo I, where I
def
= (g0, . . . , gn). But, by equation (4.2),

gσn
(φn(x,y)) = ((ν∗g0)

pn
, (ν∗g1)

pn
, . . . , (ν∗gn)p

n
),

and so, by equation (4.1), φn is well defined.

Therefore, for any point (x,y) = ((x0, . . . , xn), (y0, . . . , yn)) ∈ U(Wn+1(k̄)), φn(x,y) = νσn
◦

φn(x0, y0), and so the diagram

U(Wn+1(k̄))
φ

n

−−−−→ Uσn
(Wn+1(k̄))

ν

x





x



νσn

U(k̄)
φn

−−−−→ Uσn
(k̄)

commutes. �

Corollary 4.2. With the same hypotheses as Theorem 4.1, we have that the reduction modulo p

of
(

1

pn
φn

)∗

dx

is dFn + F p−1
n−1dFn−1 + · · · + F pn−1−1

1 dF1 + xpn−1
0 dx0.

Proof. Using the formula for φn from the Theorem 4.1, we have

(

1

pn
φn

)∗

dx =
1

pn
d
(

xpn
+ pF pn−1

1 + · · · + pnF n

)

=

= dF n + F
p−1
n−1dF n−1 + · · · + F

pn−1−1
1 dF 1 + xpn−1dx,

which reduces to dFn + F p−1
n−1dFn−1 + · · · + F pn−1−1

1 dF1 + xpn−1
0 dx0. �

We now want to apply the previous corollary in the case of canonical liftings of elliptic curves

to prove Theorem 2.1. But, in order to do use the corollary, we need to show that, modulo pn, the

n-th power of the lift of the Frobenius of the canonical lift is equal to the lift defined in Theorem

4.1. We need the following lemma:

Lemma 4.3. Let C be a curve, C be a lift of C and φ : U → U σ be any lift of the Frobenius

between the affine parts. Then, if we set x = (x0, x1, . . . ) and y = (y0, y1, . . . ), the reductions of

(φ∗)n(x) and (φ∗)n(y) modulo pn+1 depend only on x0 and y0.

Proof. We prove the lemma by induction on n.

For any lift of the Frobenius φ,

φ∗(x) = xp + pF (x,y)



14 LUÍS R. A. FINOTTI

for some polynomial F (x,y) ∈ W(k)[x,y]. Modulo p2, pF (x,y) = (0, F (x0, y0)
p), where F ∈

k[x0, y0] is the reduction modulo p of F , and xp = (xp
0, 0). Thus, the lemma holds for n = 1 and

φ∗(x), and the same method may be use to show that it also holds for φ∗(y).

Now assume that the lemma holds for (φ∗)n(x) and (φ∗)n(y). We have

(φ∗)n+1(x) = (φ∗)n((φ∗)(x)) = ((φ∗)n(x))p + pF ((φ∗)n(x), (φ∗)n(y)).

Since modulo pn+2, both ap and pa depend only on a modulo pn+1, using the induction hypothesis

one easily sees that the lemma holds for (φ∗)n+1(x), and in the analogous way, for (φ∗)n+1(y). �

Proposition 4.4. Let C be a curve, and suppose that C is a lift of C. Let

ν(x0, y0) = ((x0, F1, . . . ), (y0, G1, . . . ))

be a lift of points between the affine parts and assume that there exists a lift of the Frobenius between

affine parts associated to ν, say φ : U → U σ. Then, modulo pn+1, φn is equal to the map defined

in Theorem 4.1, i.e.,

φn(x,y) = (xpn
+ pF pn−1

1 + · · · + pnF n,y
pn

+ pGpn−1

1 + · · · + pnGn),

where F i,Gi ∈ Wn+1(k)[x,y], and F i (resp., Gi) is a lift of Fi ∈ k[x0, y0] (resp., Gi).

Proof. We again work with the Greenberg transforms. Let π : G(C)(k̄) → C(k̄) be the reduction

modulo p (or the projection in the first coordinates). By Lemma 4.3, φn(x,y) modulo pn+1 depends

only on x0 and y0, and thus φn ≡ φn ◦ ν ◦ π (mod pn+1). Since the diagram

U(W(k̄))
φ

n

−−−−→ Uσn
(W(k̄))

ν

x





x



νσn

U(k̄)
φn

−−−−→ Uσn
(k̄)

commutes, φn ◦ ν = νσn
◦ φn, and so φn ≡ νσn

◦ φn ◦ π (mod pn+1), or

φn ≡ ((xp
0, F

p
1 , . . . , F

p
n), (yp

0 , G
p
1, . . . , G

p
n)) (mod pn+1).

By looking at the proof of Theorem 4.1 (more precisely, equation (4.2)), one easily sees that the

reduction modulo pn+1 of φn is this case coincides with the map defined in that theorem. �

Now we can prove Theorem 2.1.

Proof of Theorem 2.1. Assume first that p > 2. The reduction modulo p of

1

p
φ∗

(

dx

y

)

,

is a holomorphic differential. Thus, if ω denotes the reduction modulo p of
(

1

p
φ∗

)n(dx

y

)

=

(

1

pn
φn

)∗(dx

y

)

,
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then ω is also holomorphic, and so, there is a λ ∈ k such that ω = λ dx0/y0. Applying the n-th

power of the Cartier operator C to ω, we get

Cn(ω) = Cn(λ dx0/y0) = λp−n
A(p−1+···+p−n) dx0

y0
.

On the other hand, since (1/pφ)∗ is the “inverse” of the Cartier operator, Cn(ω) = dx0/y0. There-

fore, λ = A−(pn−1)/(p−1), and

ω = A−(pn−1)/(p−1) dx0

y0
.

But Proposition 4.4 tells us that we can use the Corollary 4.2 in this case, and we then get

ω =

∑n
i=0 F

pn−i−1
i dFi

ypn

0

(with F0
def
= x0). Comparing these two expressions for ω we obtain the formula for dFn/dx0.

The case p = 2 is analogous. We just need to use the invariant differential

dx

2y + x

instead of dx/y. Then we obtain

Cn(ω) = Cn

(

λ
dx0

x0

)

= λp−n dx0

x0
,

and thus λ = 1. So,

ω =
dx0

x0
.

On the other hand, by Corollary 4.2,

ω =

∑n
i=0 F

pn−i−1
i dFi

xp
0

.

Comparing the two expressions for ω in the case n = 1, gives that dF1/dx0 = 0. Inductively, one

can deduce then that dFn/dx0 = 0 for all n. �

5. Minimal Degrees

We first try to justify why assuming that our lifts of points are all hyperelliptic lifts does not

greatly compromise our goal of finding lifts of points with small order of poles at infinity (i.e., small

degrees).

We will need the following lemma:

Lemma 5.1. Every monomial of P̄n (as defined in section 3) has even degree.
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Proof. Lemma 2.1 of [Fin02] states that the monomials
∏

Xai
i

∏

Y
bj

j of P̄n are such that

∑

ai p
i =

∑

bj p
j = pn.

Since p ≡ 1 (mod 2), we have

∑

ai ≡
∑

bj ≡ 1 (mod 2),

and hence, the degree of a such monomial, namely
∑

ai +
∑

bj , is even. �

Proposition 5.2. Suppose that we have a lift of points

ν = ((x0, F1, . . . , Fn), (y0, G1, . . . , Gn)),

where n ≥ 1, from the affine part of the hyperelliptic curve C/k, given by equation (1.1), to the

affine part of some lift C/Wn+1(k), given by equation (1.2). Also, assume that ν is hyperelliptic

modulo pn and write Fn = Fn,1+y0 Fn,2 and Gn = Gn,1+y0Gn,2, with Fn,1, Fn,2, Gn,1, Gn,2 ∈ k[x0].

Then, the map

ν̃ = ((x0, F1, . . . , Fn−1, Fn,1), (y0, G1, . . . , Gn−1, y0Gn,2)),

defines a hyperelliptic lift whose degrees are not larger than those of ν.

Proof. Writing x = (x0, x1, . . . ) and y = (y0, y1, . . . ), one can expand (1.2) using the multiplication

and addition of Witt vectors. The equality of the coordinates on both sides of this expansion gives

the equations that determine the Greenberg transform. In particular, comparing the (n + 1)-th

coordinates, we have:

2ypn

0 yn + · · · = f ′(x0)
pn
xn + . . .

where neither xn nor yn appear in any of the omitted terms. Since ν defines a lift, we have:

2ypn

0 Gn + · · · = f ′(x0)
pn
Fn + . . . . (5.1)

The omitted terms on the right hand side of (5.1) involve only x0, F1, . . . , Fn−1 ∈ k[x0], and

therefore form a polynomial in k[x0]. The omitted terms on the left hand side of (5.1) come

from P̄n(y0, G1, . . . , Gn, y0, G1, . . . , Gn), and by Lemma 5.1, each one has an even number of Gi’s.

Replacing each Gi by y0Hi, we can factor an even power of y0 in each monomial, and it will be

multiplying a polynomial in k[x0]. But since y2
0 = f(x0), this factored term is also a polynomial in

k[x0]. Hence, all the omitted terms of (5.1) are polynomials in k[x0].

Thus, equation (5.1) implies that

2ypn

0 (y0Gn,2) + · · · = f ′(x0)
pn
Fn,1 + . . .

(with the same omitted terms as equation (5.1)) and

2f(x0)
(pn−1)/2Gn,1 = f ′(x0)

pn
Fn,2.
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Thus, taking Fn,2 = Gn,1 = 0 also gives us a well defined hyperelliptic lift of points, with degrees

not greater than the degrees of Fn and Gn. �

So, remembering that we want to obtain minimal degrees coordinate by coordinate, this shows

that the last coordinate of the lift of points can always be made hyperelliptic if the previous

coordinates already are, and in particular, modulo p2, we can always have a hyperelliptic lift with

minimal degrees.

Note also that in principle we could have lifts ν and ν̃, say ν = ((x0, F1, F2), (y0, G1, G2)) and

ν̃ = (x0, F̃1, F̃2), (y0, G̃1, G̃2)) such that degF1 < deg F̃1 but degF2 > deg F̃2, and so our minimal

lift (or even absolute minimal lift) might not have the minimal degree among all possible F2’s if we

don’t impose restrictions on the degree of F1. But in general one expects that if degF1 < deg F̃1,

then also degF2 < deg F̃2.

We now introduce a useful lemma, that will be essential for the proofs of Propositions 2.2 and

2.3:

Lemma 5.3. Let a, b, c ∈ k[x0], with deg(a) = n, deg(b) = m, deg(c) = r. Also, let s
def
=

max{r, n+m−1} and assume (a, b) = 1. Then, there exists a unique pair of polynomials u, v ∈ k[x0]

with deg(u) ≤ m− 1 and deg(v) ≤ s−m such that au+ bv = c.

Proof. We follow the same idea of Lemma IV.1 in [VW99]. Let L(i) denote the vector space of

polynomials in k[x0] with degrees less than or equal to i. Consider the linear map

ψ : L(m− 1) ⊕ L(s−m) → L(s),

given by ψ(u, v)
def
= au + bv. Since (a, b) = 1, ψ(u, v) = 0 if, and only if, u = bz and v = −az,

for some polynomial z ∈ k[x0]. But deg(u) ≤ m − 1 < deg(b), which implies u = z = 0. Thus

kerψ = {0}. Since dimL(i) = i + 1, comparing dimensions, we have that ψ is an isomorphism,

and since c ∈ L(s), there exist a unique pair u, v as in the statement. �

We can now prove the main results of this section.

Proof of Proposition 2.2. We will work in Ur((d − 2)(p + 1)/p), where the valuation is defined by

v(x0)
def
= −2, v(y0)

def
= −d, v(α)

def
= 0, for α ∈ k×, v(0)

def
= ∞, and extended in the natural way to

k[x0, y0]. (In other words, if d is odd, v is the order of vanishing at the point at infinity, and if d

is even, v is twice the order of vanishing at one of the points at infinity.)

We prove the theorem by constructing the Fn’s and Hn’s inductively. The case n = 0 is trivial.

Now suppose we have constructed ν up to the n-th coordinate. We construct Fn and Hn in the

following way: observe that (x0, F1, . . . , Fn−1) and (y0, y0H1, . . . , y0Hn−1) are both in the group

Un−1((d− 2)(p+ 1)/p), by the induction hypothesis.



18 LUÍS R. A. FINOTTI

We have in the (n+ 1)-th coordinate of the equation of G(C)/k,

−f ′(x0)
pn
xn + 2 ypn

0 yn = . . . ,

and, since ν will be a lift, we need

−f ′(x0)
pn
Fn + 2 f(x0)

(pn+1)/2Hn = . . . , (5.2)

where no omitted term involves either Fn or Hn. (Here we view Fn and Hn as “unknowns”, rather

than as polynomials.)

By Lemmas 3.1 and 3.2, all the omitted terms in (5.2) have valuations greater than or equal

to −(n(d− 2) + 2d)pn − n(d − 2)pn−1. Let c denote these omitted terms. By the same argument

as the one used in the proof of Proposition 5.2, c is a polynomial in x0. Let a
def
= −f ′(x0)

pn
and

b
def
= 2f(x0)

(pn+1)/2. Then, by Lemma 5.3, there are polynomials u and v, with valuations greater

than or equal to −dpn − (d− 2) and −(n(d− 2) + d)pn − n(d− 2)pn−1 + d respectively, such that

au+ bv = c. Thus, we can define Fn
def
= u, and Hn

def
= v.

The fact that degFn is minimal comes from the uniqueness in Lemma 5.3. We cannot have a

F̃n with degree less than the degree of Fn, unless we allow deg H̃n > ((n(d − 2) + d)pn + n(d −

2)pn−1 − d)/2. But in this case the degree of the left hand side of the equation

−f ′(x0)
pn
F̃n + 2f(x0)

(pn+1)/2H̃n = . . . ,

would have degree larger than the upper bound for the degree of the right hand side. Therefore,

there can be no such pair F̃n, H̃n. �

Observe that if we have a supersingular elliptic curve E, by Proposition 4.2 in [VW00], the

minimal lift from E to any lift E is such that degF1 ≥ (3p+1)/2, i.e., in this case the upper bound

in Proposition 2.2 cannot be improved.

With the same approach, one can prove Proposition 2.3.

Proof of Proposition 2.3. The proof follows the exact same idea as the proof of Proposition 2.2:

again we will work in U((d− 2)(p+ 1)/p) and we just apply Lemma 5.3 with a
def
= 2f(x0)

(pn+1)/2,

b
def
= −f ′(x0)

pn
, and c as before. �

Propositions 2.2 and 2.3 have obvious applications to elliptic curves, by taking d = 3. But by

Theorem 1.1, we can see that taking E ordinary and E its canonical lift, we can have degF1 ≤

(3p−1)/2, degH1 ≤ 2p−2, and so have degrees smaller than the upper bounds found in Proposition

2.2. This (together with the results to be obtained in section 6) gives the motivation for the following

proposition, with better bounds for degHn:
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Proposition 5.4. Let C/k and C/W(k) be curves given by equations (1.1) and (1.2), and suppose

that the minimal degree lift of points

ν = ((x0, F1, F2, . . . ), (y0, y0H1, y0H2, . . . )),

is such that

degF1 ≤
dp− (d− 2)

2
and

degH1 ≤
(2d− 2)p− (d− 2) − d

2
.

Then, we must have

degFn ≤
dpn + (d− 2)

2

and

degHn ≤
(n(d− 2) + d)pn − n(d− 2)pn−1 − d

2
,

for all n > 0.

Proof. The idea is that the restrictions on F1 and H1 allow us to work on Ur((d − 2)(p − 1)/p)

instead of Ur((d − 2)(p + 1)/p). Inductively, the term c (as in the proof of Proposition 2.2) will

have degree less than or equal to (n(d− 2) + 2d)pn − n(d− 2)pn−1)/2, and we just apply Lemma

5.3 again. �

6. Lower Bounds

The main goal of this section is to prove Theorem 2.4. F. Voloch proved the particular case of

this theorem where p = 3, d = 6 and n = 1, and it is possible to generalize his proof. The proof

given below is somewhat shorter.

Proof of Theorem 2.4. By Theorem 4.1, we have a lift φn of the pn-th power Frobenius φn. Let

U denote the affine part of C and U denote the affine part of C . Then, by Corollary 4.2, the

reduction modulo p of (1/pn φn)∗(dx/y) is given by

ω
def
=

1

ypn

0

(

n
∑

i=0

F
(pn−i−1)
i

dFi

dx0

)

dx0.

Since dx/y is regular in U , ω must be regular on U . In particular, it is regular at the points

with y0 = 0, and since

ω =
2

f(x0)(p
n−1)/2

(

n
∑

i=0

F
(pn−i−1)
i

dFi

dx0

)

dy0

f ′(x0)
,

we have that
n
∑

i=0

F
(pn−i−1)
i

dFi

dx0
= g(x0) f(x0)

(pn−1)/2,
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for some g(x0) ∈ k[x0]. (Remember that since the curve is non-singular, (f, f ′) = 1.) Therefore,

degFn ≥ (dpn − (d− 2))/2 and if we have equality, necessarily λn
def
= g(x0) ∈ k×.

We now need to prove that λn = A−(pn−1)/(p−1). First observe that, whether n = 1 or n > 1, we

must have the equality for the degree of F1, and thus we must have that

dF1

dx0
= λ1f(x0)

(p−1)/2 − xp−1
0 .

for some λ1 ∈ k×. But since the right hand side is a derivative in characteristic p, it cannot have

a term in xp−1
0 , and hence λ1 = A−1, where A is the (necessarily non-zero) coefficient of xp−1

0 in

f(x0)
(p−1)/2.

Now, to prove that in general λn = A−(pn−1)/(p−1), we proceed by induction: suppose that

λn−1 = A−(pn−1−1)/(p−1), i.e., (with a computation analogous to the one above for ω in the case

n− 1)

1

ypn−1

0

(

n−1
∑

i=0

F
(pn−1−i−1)
i

dFi

dx0

)

dx0 = A−(pn−1−1)/(p−1) dx0

y0
. (6.1)

Since

ω =
1

ypn

0

(

n
∑

i=0

F
(pn−i−1)
i

dFi

dx0

)

dx0 = λn
dx0

y0
,

applying the Cartier operator to both sides of the second equality of the equation above, we obtain

1

ypn−1

0

(

n−1
∑

i=0

F
(pn−1−i−1)
i

dFi

dx0

)

dx0 = λ1/p
n A1/p dx0

y0
.

Comparing with equation (6.1), we obtain the formula for λn. �

We observe here that the condition that A−1f(x0)
p−1 − xp−1

0 is a derivative, which is necessary

to achieve these lower bounds, also seems to be sufficient to obtain degF1 = (dp− (d− 2))/2, i.e.,

if A−1f(x0)
(p−1)/2 − xp−1

0 is a derivative, then there is some lift C of C (modulo p2) for which we

can obtain a hyperelliptic lift of points satisfying degF1 = (dp − (d − 2))/2. (In another words,

the absolute minimal degree lift modulo p2 of C satisfying the above condition, has degF1 equal

to the lower bound of Theorem 2.4.) Note that if C is fixed from the beginning, one might not be

able to obtain F1 with such small degree.

For the case d = 3 (i.e., elliptic curves), one can always find ν and C such that degF1 =

(dp − (d − 2))/2: the condition for this case is equivalent to saying that the elliptic curve is

ordinary, and choosing C to be the canonical lift of C, we have the elliptic Teichmüller lift with

degF1 satisfying the lower bound. Also we have done several computations with hyperelliptic

curves and they always had liftings of points satisfying the lower bound.

The condition also seems to be sufficient to obtain the lower bound for degF2 as well, but not

as many examples were tried in this case. But again, it is true for elliptic curves, as we will prove

in section 7.
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Also, observe that if we achieve the lower bound for n = 1, we can use Proposition 5.4 to bound

the degrees instead of Proposition 2.2, getting better bounds for degHn.

If these lower bounds can be achieved, the assumption that ν is hyperelliptic does not affect

the fact that the degrees are minimal, meaning that we cannot have smaller degrees even if we

drop this assumption. Indeed, by induction assume we can obtain a lift with Fn (not necessarily a

polynomial in x0) having degree less than or equal to (dpn − (d− 2))/2, while assuming also that,

for i = 0, . . . , (n− 1), Fi ∈ k[x0] with degFi = (dpi − (d − 2))/2 and Gi = y0Hi, with Hi ∈ k[x0].

Let us write Fn = Fn,1 + y0 Fn,2 and Gn = Gn,1 + y0Gn,2, with Fn,1, Fn,2, Gn,1, Gn,2 ∈ k[x0]. As in

the proof of Proposition 5.2, we have in the (n+ 1)-th coordinate of the Greenberg transform:

2ypn

0 yn + · · · = f ′(x0)
pn
xn + . . . ,

with no xn or yn in the omitted terms, and this implies that

2f(x0)
(pn−1)/2Gn,1 = f ′(x0)

pn
Fn,2.

Hence, if Fn,2 6= 0, then it is a multiple of f(x0)
(pn−1)/2, and thus the term y0 Fn,2 has degree

greater than or equal to dpn/2 (remember that we defined deg y0 = d/2) and then so does Fn,

what is a contradiction to the initial assumption on the degree of Fn.

7. Minimal Degrees for Elliptic Curves

In this section we will study absolute minimal degree lifts and curves modulo p3 of ordinary

elliptic curves only and in characteristic p 6= 2, 3. (For p = 2, 3, the elliptic Teichmüller lift is also

the (we have uniqueness) absolute minimal lift modulo p3.)

As observed before, modulo p2, Proposition 4.2 of [VW00] tells us that the choice of curve that

gives the minimal possible degree for F1 is the canonical lift itself, the minimal degree map is the

elliptic Teichmüller lift and the degree of F1 is exactly (3p − 1)/2. Moreover, if E is not ordinary,

then necessarily degF1 = (3p+ 1)/2.

The next proposition is the key step in obtaining the results modulo p3. It was stated as a

conjecture (and proved, with the help of a computer, for p ≤ 877) in the author’s doctoral thesis

[Fin01] and was later proved in general by J. Tate in [Tat02].

Proposition 7.1 (Tate). Let τ = ((x0, F1), (y0, G1)) be the elliptic Teichmüller lift from an ordi-

nary elliptic curve

E/k : y2
0 = f(x0)

to its canonical lift. Let q(x0) and r(x0) be the quotient and remainder of the division of F 2
1 by

xp
0 f(x0)

(p+1)/2, i.e.,

F 2
1 = (xp

0 f(x0)
(p+1)/2)q(x0) + r(x0), deg r(x0) ≤

5p+ 1

2
.

Then, in fact deg r(x0) ≤ (5p− 1)/2.
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Proof. See [Tat02] for a proof of this proposition. �

In this section, since we are dealing with elliptic curves, we will write

τ(x0, y0) = ((x0, F1, F2), (y0, G1, G2))

for the elliptic Teichmüller lift and

ν(x0, y0) = ((x0, F1, F̃2), (y0, G1, G̃2))

for the minimal lift.

Theorem 7.2. An absolute minimal degree lift

ν = ((x0, F1, F̃2), (y0, G1, G̃2))

of an ordinary elliptic curve E is such that deg F̃2 = (3p2 − 1)/2 and the corresponding absolute

minimal degree curve E is its canonical lift (modulo p3). (So, up to isomorphism, the absolute

minimal degree curve in this case is unique and satisfies the lower bound of section 6.) Moreover,

dF̃2

dx0
=
dF2

dx0
.

Proof. We first prove that the minimal degree lift from E to its canonical lift E is such that

deg F̃2 = (3p2 − 1)/2. We will actually give a way to construct the absolute minimal degree lift

from the elliptic Teichmüller lift: if

τ = ((x0, F1, F2), (y0, G1, G2))

is the elliptic Teichmüller lift, we write, using the division algorithm,

F2 = f(x0)
(p2+1)/2 q1(x0) + r1(x0) (deg r1 ≤ (3p2 + 1)/2).

Now define F̃2
def
= r1(x0) and G̃2

def
= G2 − y0(f

′(x0)
p2
q1(x0))/2. Then, we have

2yp2

0 G̃2 − f ′(x0)
p2
F̃2 = 2yp2

0 G2 − f ′(x0)
p2
F2,

and thus, by equation (5.1),

ν
def
= ((x0, F1, F̃2), (y0, G1, G̃2))

is another lift from E to its canonical lift, and since deg F̃2 ≤ (3p2 + 1)/2, by Proposition 2.2, it is

the minimal lift.

We now have to prove that deg F̃2 = (3p2 − 1)/2. Let d(x0)
def
= xp2

0 F2 − 3/4F 2p
1 . Theorem 3.3

tells us that deg d(x0) = (5p2 − 1)/2. Also, by Proposition 7.1,

3

4
F 2

1 = (xp
0 f(x0)

(p+1)/2)q(x0) + r(x0), with deg r(x0) ≤ (5p− 1)/2. (7.1)
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We can then write

xp2

0 F2 = xp2

0 f(x0)
(p2+p)/2q(x0)

p + (r(x0)
p + d(x0))

= xp2

0 f(x0)
(p2+1)/2

(

f(x0)
(p−1)/2q(x0)

p
)

+ (r(x0)
p + d(x0)) ,

(7.2)

with deg (r(x0)
p + d(x0)) = (5p2 − 1)/2, and thus it is the remainder of the division of xp2

0 F2 by

xp2

0 f(x0)
(p2+1)/2. We see then that xp2

0 divides this remainder and F̃2 = r1(x0) = (r(x0)
p + d(x0)) /x

p2

0 ,

which implies that deg F̃2 = (3p2 − 1)/2.

Hence, by Theorem 2.4, this has to be the absolute minimal degree lift, and

dF̃2

dx0
= A−p−1f(x0)

(p2−1)/2 − xp2−1
0 − F p−1

1

dF1

dx0
=
dF2

dx0
.

(One could also deduce that dF̃2/dx0 = dF2/dx0 from equation (7.2), since it implies that

F2 = f(x0)
(p2+p)/2q(x0)

p +
r(x0)

p + d(x0)

xp2

0

= f(x0)
(p2+p)/2q(x0)

p + F̃2,

and taking derivatives would give us the result.)

Now, we prove that if we can obtain deg F̃2 = (3p2 − 1)/2, then E must be the canonical lift

of E. So assume we have a lift of E to some curve E (not necessarily the canonical lift) with

deg F̃2 = (3p2 − 1)/2. Let

˜̃F2
def
= F̃2 + (q(x0)f(x0)

(p+1)/2)p

(with the q(x0) from equation (7.1)) and

˜̃G2
def
= G̃2 +

y0

2
(f ′(x0)

p2
f(x0)

(p−1)/2q(x0)
p).

Then,

ν̃ : (x0, y0) 7→ ((x0, F1,
˜̃F2), (y0, G1,

˜̃G2)),

is another lift, since

2yp2

0
˜̃G2 − f ′(x0)

p2 ˜̃F2 = 2yp2

0 G̃2 − f ′(x0)
p2
F̃2.

But then, by hypothesis,

xp2

0
˜̃F2 −

3

4
F 2p

1 = xp2

0 F̃2 +
(

xp
0 q(x0) f(x0)

(p+1)/2
)p

−
3

4
F 2p

1 = xp2

0 F̃2 − r(x0)
p

has degree less than or equal to (5p2 − 1)/2. Theorem 3.3 then tells us that E is the canonical lift

modulo p3, ˜̃F2 and ˜̃G2 are F2 and G2 from the elliptic Teichmüller lift.

�



24 LUÍS R. A. FINOTTI

Thus, modulo p3, the absolute minimal degree curve over an ordinary elliptic curve is the same

as its canonical lift.

So, we can modify the algorithm described in the section 6 of [Fin02] to compute this absolute

minimal lift and the canonical lift of an elliptic curve over a perfect field of characteristic p ≥ 5.

The function (written for the package Magma) available at

http://www.math.ucsb.edu/~finotti/can_lifts.html

that computes the canonical lift and elliptic Teichmüller lift, also gives you an option to compute

this absolute minimal degree lift instead of the elliptic Teichmüller lift.

8. A Necessary and Sufficient Condition to Lift the Frobenius

In sections 9 and 10 we will deal with liftings of the Frobenius modulo p3, and so in this section

we prove Proposition 2.7, which will allow us to obtain such liftings.

Lemma 8.1. Let

g(x,y) =
∑

i,j

ai,j xiyj ∈ W2(k)[x,y],

and suppose that

g(x,y) = (g0(x0, y0), g1(x0, x1, y0, y1)),

Then, if

ai,j = (ai,j,0, ai,j,1)

we have

g1(x0, x1, y0, y1) = x1

(

∂g0
∂x0

)p

+ y1

(

∂g0
∂y0

)p

+ ψ(g0) +
∑

i,j

ai,j,1 x
pi
0 y

pj
0 .

(Here ψ is the function defined in Definition 2.6.)

Sketch of the Proof. First we observe that, with the same notation as section 3,

S̄1(X0, X1, Y0, Y1) = X1 + Y1 + ψ(X0 + Y0)

and

P̄1(X0, X1, Y0, Y1) = X1 Y
p
0 +Xp

0 Y1.

Then, one can easily prove that the formula is true for g equal to powers of x and y, then for

monomials, and finally for an arbitrary polynomial, by an induction on the number of terms. �

Lemma 8.2. Let C be a hyperelliptic curve with reduction C (given by equations (1.2) and (1.1)

respectively) and

ν = ((x0, F1), (y0, y0H1))

a hyperelliptic lift of points. If

dF1

dx0
= A−1f(x0)

(p−1)/2 − xp−1
0 ,
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then

2 f H ′
1 + f ′H1 −A−1 (f ′)p + f (p−1)/2 f ′ = 0.

Proof. By Lemma 8.1, when expanding the equation (1.2) as Witt vectors and comparing the

second coordinates we have

2 yp
0 y1 = x1 (f ′)p + ψ(f) + . . . ,

where the omitted terms are p-th powers. Since ν is a lift, we have,

2 f (p+1)/2 H1 = F1(f
′)p + ψ(f) + . . . ,

and so this is an equality of polynomials in x0. Taking derivatives, one obtains

f ′ f (p−1)/2H1 + 2 f (p+1)/2 H ′
1 = A−1 f (p−1)/2 (f ′)p − fp−1 f ′,

and dividing both terms by the common factor f (p−1)/2, we obtain the differential equation for H1

from the statement. �

We also need the following simple lemma:

Lemma 8.3. Let P (X,Y ) be a polynomial in two variables. Then

P (X0 + pX1, Y0 + pY1)

≡ P (X0, Y0) + p

(

∂P

∂X
(X0, Y0)X1 +

∂P

∂Y
(X0, Y0)Y1

)

(mod p2).

Proof. This is an easy application of Taylor’s formula for P (X,Y ). �

We finally prove Proposition 2.7, which can be quite useful when dealing with explicit compu-

tations.

Proof of Proposition 2.7. We first prove that the condition is necessary. Assume we have a lift of

φ associated to ν. By Theorem 4.1, it must have the form

φ(x,y) = (xp + pF 1 + p2P ,yp + pG1 + p2Q),

for some P ,Q ∈ W3(k)[x,y].

Let δ be the p-derivation associated to φ (as in [Bui96]):

δu
def
=

φ∗uσ − up

p
.

We then have

δx = F 1 + pP
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and, using Lemma 8.3,

δ2x =
(F 1 + pP )σ ◦ φ − (F 1 + pP )p

p

=
F σ

1 (xp) − F
p
1

p
+
dF 1

dx

σ

(xp) · F 1 + P σ(xp) + p · (. . . ).

(8.1)

But, by Lemma 2.6 of [Bui96], the reduction modulo p of δ2x must be equal to F2 − x
p(p−1)
0 F1.

Since the reduction modulo p of P σ(xp) is clearly a p-th power, say P p, and F 1 is the Teichmüller

lift of F1,

F2 − x
p(p−1)
0 F1 = ψ(F1) +

(

F ′
1

)p
F1 + P p. (8.2)

An analogous computation with δ2y, gives

G2 − y
p(p−1)
0 G1 = ψ(G1) +

(

∂G1

∂x0

)p

F1 +

(

∂G1

∂y0

)p

G1 +Qp,

and hence, the condition is necessary.

We now prove the converse, more precisely, that φ is well defined and that the diagram

U(W3(k̄))
φ

−−−−→ Uσ(W3(k̄))

ν

x





x



νσ

U(k̄)
φ

−−−−→ Uσ(k̄)

(8.3)

commutes, where U and U are the affine parts of C and C respectively. It suffices to prove it for

the Greenberg transform. Defining

g
def
= y2 − f(x),

we write

g(x,y) = (g0(x0, y0), g1(x0, x1, y0, y1), g2(x0, x1, x2, y0, y1, y2)).

Then, to prove that φ is well defined, it suffices to prove that φ∗gσ
i ∈ I, for i = 0, 1, 2, where

I
def
= (g0, g1, g2).

By Theorem 4.1, we have that φ∗gσ
0 ,φ

∗gσ
1 ∈ I. So we just need to show that φ∗gσ

2 ∈ I.

One has

xp = (x0, x1, x2)
p = (xp

0, 0, x
p2(p−1)
0 xp

1).

Also, by Lemma 8.1

pF 1 = (0, F p
1 ,
(

x1(F
′
1)

p + ψ(F1)
)p

).

Hence,

xp + pF 1 + p2P = (xp
0, F

p
1 , F

p
2 + X

p
2) , (8.4)

where,

X2
def
= (x1 − F1)

(

xp−1
0 + F ′

1

)p
,
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and in a similar manner,

yp + pG1 + p2Q = (yp
0 , G

p
1, G

p
2 + Y

p
2) (8.5)

where

Y2
def
= (x1 − F1)

(

y0H
′
1

)p
+ (y1 −G1)

(

yp−1
0 +H1

)p
.

Note that

gσ
2 = 2yp2

0 y2 − ((f ′)σ(x0))
p2
x2 + . . . ,

where no omitted term depends on either x2 or y2. Hence

φ∗gσ
2 = 2yp3

0 (G2 + Y2)
p − f ′(x0)

p3
(F2 + X2)

p + . . . . (8.6)

Since

ν = ((x0, F1, F2), (x0, G1, G2)),

is a lift,

2yp3

0 G
p
2 − f ′(x0)

p3
F p

2 + · · · ≡ 0 (mod (g0)),

where the omitted terms are the same as the ones in formula (8.6). Therefore

φ∗gσ
2 ≡ 2yp3

0 Y
p
2 − f ′(x0)

p3
X

p
2 (mod I),

and it suffices to prove that

2yp2

0 Y2 − f ′(x0)
p2

X2 ≡ 0 (mod I),

or,

(x1 − F1)
(

−A−1 (f ′)p f (p−1)/2 + 2 f (p+1)/2H ′
1

)p

+ (y1 −G1) 2 yp
0

(

fp−1 + f (p−1)/2H1

)p
≡ 0 (mod I).

Factoring f (p2−p)/2, it is enough to prove

(x1 − F1)
(

−A−1 (f ′)p + 2 f H ′
1

)p
+ (y1 −G1) 2 yp

0

(

f (p−1)/2 +H1

)p
≡ 0 (mod I). (8.7)

Using Lemma 8.2, equation (8.7) becomes
(

H1 + f (p−1)/2
)p
(

(x1 − F1)(−f
′)p + (y1 −G1)(2 y0)

p
)

≡ 0 (mod I).

But g1, ν
∗g1 ≡ 0 (mod I), and then

g1(x0, x1, y0, y1) − g1(x0, F1, y0, G1) = (x1 − F1)(−f
′)p + (y1 −G1)(2 y0)

p ≡ 0 (mod I),

what finishes the proof that φ is well defined.

Finally, equations (8.4) and (8.5) show the diagram (8.3) commutes. �

The proof of the proposition above also gives us the following corollary:
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Corollary 8.4. Let C/k and C/W3(k) be curves given by equations (1.1) and (1.2), and suppose

that we can lift the Frobenius for the affine part of C. Let

ν
def
= ((x0, F1, F2), (y0, G1, G2))

be the lift of points, and also assume that Fi ∈ k[x0]. Then,

dF2

dx0
=

(

dF1

dx0

)p+1

+

(

dF1

dx0

)p

xp−1
0 +

(

x
p(p−1)
0 − F p−1

1

) dF1

dx0
.

In particular, if dF1/dx0 = λ yp−1
0 − xp−1

0 for some λ ∈ k×, then

dF2

dx0
= λp+1 yp2−1

0 − xp2−1
0 − F p−1

1

dF1

dx0
.

Proof. By Proposition 2.7, the first coordinate of the lift of the Frobenius has the form

xp + pF 1 + p2P

where F 1 is a lift of F1 to W3(k)[x] and P is some polynomial. Equation (8.2) also holds in this

case. Observing that
dψ(F 1)

dx0
= xp−1

0

(

dF1

dx0

)p

− F p−1
1

dF1

dx0
, (8.8)

if we take derivatives of equation (8.2) we obtain the formula for dF2/dx0 in the statement. �

9. Minimal Lifts and the Frobenius

By Theorem 4.1, the existence of a lift from C to C/W2(k) is enough to give a lift of the

Frobenius φ on the affine part of C. On the other hand, the existence of a lift from C to C/W3(k)

merely guarantees a lift of φ2. Of course, in the case of elliptic curves, the canonical lift always

has a lift of φ associated to τ for any power of p. So, one could ask if there is also a lift of the

Frobenius (between the affine parts) associated to the minimal lift, at least modulo p3.

Theorem 9.2 below gives a precise answer to this question. But we first need the following

lemma:

Lemma 9.1. Let

ν = ((x0, F1, . . . , Fn), (y0, G1, . . . , Gn)),

be a lift of points from the affine part of C, given by equation (1.1), to the affine part of a lift C,

given by equation (1.2), with

dFi

dx0
= A−(pi−1)/(p−1)f(x0)

(pi−1)/2 −

i−1
∑

j=0

F pi−j−1
j

dFj

dx0
,

for i = 1, . . . , n, where A denotes the coefficient of xp−1
0 in f (p−1)/2. Then

dGi =
(

A−(pi−1)/(p−1)(f ′)p
i−1 − ypi−1

0

)

dy0 −

i−1
∑

j=1

Gpi−j−1
j dGj .
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Proof. We fix some i ∈ {1, . . . , n}, and work modulo pi+1. Then, by Corollary 4.2, the reduction

modulo p of (1/piφi)∗(dx/y) is given by

ω
def
=

1

ypi

0





i
∑

j=0

F
(pi−j−1)
j

dFj

dx0



 dx0 = A−(pi−1)/(p−1) dx0

y0
.

On the other hand, since dx/y = 2dy/f ′, and by the analogous to Corollary 4.2 for dy, we have

that

ω = 2





dGi +
∑i−1

j=0G
pi−j−1
j dGj

(f ′)pi



 .

Since dx0/y0 = 2dy0/(f
′), comparing the two expressions for ω we obtain the formula for dGi in

the statement. �

Theorem 9.2. Let

ν = ((x0, F1, F2), (y0, G1, G2)),

be a hyperelliptic lift of points from C, given by equation (1.1), to a lift C, given by equation (1.2),

where again we write Gi = y0Hi with Hi ∈ k[x0]. If

dFi

dx0
= A−(pi−1)/(p−1)f(x0)

(pi−1)/2 −

i−1
∑

j=0

F pi−j−1
j

dFj

dx0
,

for i = 1, 2, where A denotes the coefficient of xp−1
0 in f (p−1)/2, then there is a lift of the Frobenius

modulo p3. In particular, if the minimal degree lift of C satisfies the lower bounds in Theorem 2.4,

namely degF1 = (dp − (d − 2))/2 and degF2 = (dp2 − (d − 2))/2, there is a lift of the Frobenius

modulo p3.

Proof. We use Proposition 2.7. So, it suffices to prove that

d

dx0

(

F2 − x
p(p−1)
0 F1 − ψ(F1) −

(

F ′
1

)p
F1

)

= 0 (9.1)

and

d

(

G2 − y
p(p−1)
0 G1 − ψ(G1) −

(

∂G1

∂x0

)p

F1 −

(

∂G1

∂y0

)p

G1

)

= 0 (9.2)

By using equation (8.8), the equality in (9.1) is easily verified.

The proof of equation (9.2) is also a straightforward calculation, but requires a little more work.

First we observe that

dψ(G1) =

(

∂G1

∂x0

)p

xp−1
0 dx0 +

(

∂G1

∂y0

)p

yp−1
0 dy0 −Gp−1

1 dG1.
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So, the left-hand-side of equation (9.2) becomes

dG2 − y
p(p−1)
0 dG1 −

(

∂G1

∂x0

)p

xp−1
0 dx0 +

(

∂G1

∂y0

)p

yp−1
0 dy0

−Gp−1
1 dG1 −

(

∂G1

∂x0

)p

(A−1f (p−1)/2 − xp−1
0 )dx0 −

(

∂G1

∂y0

)p

dG1.

Using Lemma 9.1, dx0 = (2y0/f
′) dy0 and G1 = y0H1, one sees that the expression above is equal

to
(

A−1(f ′)p − f (p−1)/2 f ′ − f ′H1 − 2 f H ′
1

)p A−1

f ′
dy0,

which, by Lemma 8.2, is equal to zero. �

With the help of this theorem, we can prove the following proposition that deals with the case

of minimal degree lifts of elliptic curves.

Proposition 9.3. Let

ν(x0, y0) = (x0, F1, F̃2, y0, G1, G̃2)

be the minimal lift from E (ordinary) to E/W3(k), such that, modulo p2, E is the canonical lift

and ν gives us the Teichmüller lift. We have a lift of the Frobenius associated to ν if, and only if,

deg F̃2 = (3p2 − 1)/2 (and then ν is the absolute minimal degree lift and E is the canonical lift also

modulo p3).

Proof. Assume that we have a lift of φ associated to ν. So

F̃2 − x
p(p−1)
0 F1 − ψ(F1) −

(

F ′
1

)p
F1

is a p-th power by Proposition 2.7, and thus cannot have a term of degree (3p2 + 1)/2. Since all

terms in the above equation, except possibly F̃2, have degrees less than or equal to (3p2 − 1)/2,

deg F̃2 ≤ (3p2 − 1)/2, and hence ν is the absolute minimal degree lift.

The converse is a trivial consequence of the Theorem 9.2.

�

10. Mochizuki Lifts

As mentioned in section 2, curves of genus g > 1 do not have lifts of the Frobenius (see [Ray83]),

but Mochizuki showed in [Moc96] that a Mochizuki-ordinary (defined in section 11) curve of genus

g admits a lift of the Frobenius with certain singularities. Although the theory is completely

developed (over almost two hundred pages), few examples are known of Mochizuki lifts. In this

section we give an example of a minimal degree lift that is also a Mochizuki lift. (Observe that

Mochizuki lifts are supposed to have a lift of points with “small” degrees.)
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We first observe that the number of singularities of Mochizuki lifts has to be equal to (g−1)(p−1):

indeed, Corollary 4.9, Proposition 4.10 and Definition 4.11 of [Moc96] on pg. 1116 and 1117, tell

us that for the lifting of the Frobenius φ,

ht(φ) = −p(g − 1) + deg(C − U) = (1 − g)

where ht(φ) denotes the height of φ (which we will discuss in more detail below) and U is the

open set on which we can lift the Frobenius. (Note that we have no marked points!) Thus,

deg(C − U) = (p− 1)(g − 1).

Finding an explicit example of a Mochizuki lift was Voloch’s motivation for proving Theorem 2.4

for p = 3, d = 6 and n = 1: genus 2 curves are necessarily hyperelliptic, and if the two supersingular

points form a set that is invariant under the hyperelliptic involution, we can assume that those

points are at infinity. But Mochizuki’s theory is indeed invariant with respect to the hyperelliptic

involution. Roughly, this is true because the hyperelliptic involution can be deformed along with

an arbitrary deformation of the curve. Hence, in the genus 2 case, the supersingular points can

always be put at infinity.

Note that the genus 2 case is the only one for which we can try to relate Mochizuki’s theory

and minimal degree lifts, since for the former we have (p− 1)(g− 1) singularities and for the latter

either 1 (if d is odd) or 2 (if d is even).

We will now establish the connection with Mochizuki’s theory, as outlined to the author by the

referee of this paper. We will consider a genus 2 curve

C/k : y2
0 = f(x0),

where k is a perfect field of characteristic 3 and deg f = 6, and assume it admits a Mochizuki lift

C/W2(k) : y2 = f(x),

with supersingular points at infinity. As in [Bui96], the lift of the Frobenius defines a lift of points

(between the affine parts) ν(x0, y0) = ((x0, F1), (y0, G1)). (The lift of the Frobenius is then a lift

of the Frobenius associated to ν.)

Definition 10.1. Let ξP be a local Frobenius defined in a neighborhood of the point in P ∈ C

with reduction P . Let t be a local parameter at P and let δP be the reduction modulo p of the

rational function
1

p
(ξ∗

P (tσ) − φ∗(tσ)).

Then, the local height of φ at P , denoted by htP (φ), is zero if δP is regular at P , and equal to the

order of the pole of δP at P otherwise. (As in [Moc96], pg. 1116.)

By Definition 4.7 and Proposition 4.8 in [Moc96], pg. 1116, we can define:



32 LUÍS R. A. FINOTTI

Definition 10.2. The height of the lift of the Frobenius, denoted by ht(φ), is given by

ht(φ)
def
=

(

∑

P∈C

[k(P ) : k] htP (φ)

)

− p(g − 1), (10.1)

where htP (φ) is the local height at P and k(P ) is the minimal field of definition of P over k.

We now compute the local heights. Since φ is regular on the affine part of C, the non-zero local

heights can only occur at the points at infinity, say P1 and P2. So, for i = 1, 2, we have that

t = 1/x is a local parameter at P i, the points at infinity of C. Hence

ξ∗Pi
(tσ) = t3 + 3 · · · · =

1

x3
+ 3 · . . . ,

where the omitted terms are regular at P i. On the other hand,

φ∗(tσ) =
1

φ∗(x)
=

1

x3 + 3F 1 + 9 · . . .
,

where F 1 is a lift of F1. So,

1

3
(ξ∗

Pi
(tσ) − φ∗(tσ)) =

F 1 + 3 · . . .

x3(x3 + 3F 1 + 9 · . . . )
+ . . .

where the omitted terms after the plus sign are regular at P i. So

δPi =
F1

x6
0

+ . . . ,

where the omitted terms are regular at Pi, and hence

htPi(φ) = degF1 − 6.

Thus, equation (10.1), in this case (p = 3 and g = 2), gives us

ht(φ) = 2 degF1 − 15.

Remember that for us a Mochizuki lift has height less than or equal to (1 − g) = −1, and in

this case this implies that degF1 ≤ 7. Hence by Theorem 2.4, it determines an absolute minimal

degree lifting, which proves item 1 of Theorem 2.8.

Theorem 2.4 also tells us that if degF1 = 7 then the coefficient of x2
0 in f(x0), say A, is non-zero.

If we assume that k is algebraically closed (or work on some finite extension of k) we may assume

that A = 1, and so we will consider f given by equations of the form

f(x0) = x6
0 + α0x

4
0 + β0x

3
0 + x2

0 + γ0x0 + δ0.

But, with the linear change of variables

(x0, y0) 7→ (x0 + ε0, y0),
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with ε0 satisfying 2ε30+α0 ε0+β0 = 0 (again, using the fact the k is algebraically closed, or extending

k), allows us to consider f given by

f(x0) = x6
0 + a0x

4
0 + x2

0 + b0x0 + c0,

which proves all but the last sentence of item 2 of 2.8. The last sentence follows from Corollary

3.8 on pg. 1048 of [Moc96], which implies that curves whose moduli are sufficiently general admit

Mochizuki lifts.

Now, let C be given by an equation of the form

y2
0 = f(x0) = x6

0 + a0x
4
0 + x2

0 + b0x0 + c0.

We want to compute a Mochizuki lift of such curve. But as remarked above, this has to have

degF1 = 7 and hence is an absolute minimal degree lift, and thus Theorem 2.4 gives the a formula

for the derivative of F1. Using an algorithm similar to the one described in section 6 of [Fin02], we

obtain an absolute minimal degree curve

C/W2(k) : y2 = x6 + ax4 + x2 + bx + c,

and an absolute minimal degree lift ν(x0, y0) = ((x0, F1), (y0, y0H1)). If a0 6= 0 (the case when the

curve is not Mochizuki-ordinary, as we shall see in the next section), we obtain

F1 = x7
0 +

b0
a2

0

x6
0 + 2 a0 x

5
0+

a4
0 c

2
0 + 2 a4

0 + 2 a3
0 b

2
0 + 2 a3

0 c0 + 2 a2
0 b

2
0 c0 + 2 a2

0 c
2
0 + a2

0 + b40
a2

0

x3
0

+ 2 b0 x
2
0 + c0 x0 +

a4
0 b0 + 2 a3

0 b0 c0 + a2
0 b0 + b0

a5
0

H1 = (2 a3
0 + a0)x

4
0 + 2 a0 b0 x

3
0 + (2 a2

0 + 1)x2
0 + (2 a2

0 b0 + b0)x0 + 2 a2
0 c0 + b20

a1 = 2 a5
0 c

2
0 + 2 a5

0 + a4
0 b

2
0 + a4

0 c0 + a3
0 b

2
0 c0 + a3

0 c
2
0 + 2 a3

0 + a2
0 c0 + 2 a0 b

4
0 + a0 + 2 b20 + c0

b1 =
(

2 a7
0 b

3
0 c

2
0 + 2 a7

0 b
3
0 + a6

0 b
5
0 + a6

0 b
3
0 c0 + a6

0 b0 c
2
0 + a5

0 b
5
0 c0 + a5

0 b
3
0 c

2
0

+2 a5
0 b

3
0 + a5

0 b0 c0 + a4
0 b0 + 2 a3

0 b
7
0 + 2 a3

0 b0 c0 + a2
0 b0 + b0

)

a−5
0

c1 =
a7

0 c
3
0 + 2 a5

0 b
2
0 c

2
0 + 2 a4

0 b
4
0 + a3

0 b
4
0 c0 + 2 a2

0 b
4
0 + 2 b40

a5
0

For a0 = 0 we have:

F1 = x7
0 + 2 b0 x

6
0 + (2 b40 + 2 b20 c0 + 2 c20 + 1)x3

0 + 2 b0 x
2
0 + c0 x0

H1 = x2
0 + b0 x0 + b20

a1 = 2 b20 + c0

b1 = b70 + b50 c0 + b30 c
2
0 + 2 b30 + b0 c0
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c1 = 2 b20 c
2
0

Since we could obtain degF1 = 7, Proposition 4.10 on pg. 1117 of [Moc96] tells us that we indeed

computed a Mochizuki lift. (Note that Theorem 4.1 allows us to explicitly compute the lift of the

Frobenius.) Hence we proved all but the last sentence of item 3 of Theorem 2.8, which we prove

in the next section.

One can now proceed to compute a minimal degree lifting modulo 27. (Note we do not have an

analogue to Proposition 4.10 on pg. 1117 of [Moc96] modulo p3.) We again can achieve the lower

bound given by Theorem 2.4, namely degF2 = 25. So, Theorem 9.2 tells us that there exists a

lift of the Frobenius also modulo 27. The formulas for F2, H2, P and Q (the latter two as in the

statement of Proposition 2.7) are too long to be given here, but can be easily computed with the

help of a computer using the analogue to the modified algorithm for elliptic curves described in

the end of section 6 of [Fin02] and Proposition 2.7.

11. Ordinariness

We finally prove the last sentence of item 3 in Theorem 2.8, namely that given a curve

C/k : y2
0 = x6

0 + a0x
4
0 + x2

0 + b0x0 + c0, (11.1)

where k is a perfect field of characteristic 3, then its Mochizuki lift being Mochizuki-ordinary

(or hyperbolic-ordinary, as Mochizuki refers to it in [Moc96]), and its Jacobian being an ordinary

Abelian variety, are both equivalent to a0 being non-zero. Usually, when one simply says that C

is ordinary, we understand that its Jacobian is ordinary. (Mochizuki refers to this usual notion

of ordinariness as parabolic-ordinariness.) It is not true in general that these two notions are the

same, as happens in this particular case.

We first show that a0 6= 0 if, and only if, then the Jacobian of C is an ordinary Abelian variety.

We recall that the Jacobian of C is ordinary if, and only if, the restriction of the Cartier operator

to global differentials on the curve

C|Γ(C,ΩC/k) : Γ(C,ΩC/k) → Γ(C,ΩC/k)

is surjective. Let ω0
def
= dx0/y0 and ω1

def
= x0 ω0. One has

C(ω1) = a
1/3
0 ω1 + b

1/3
0 ω0,

C(ω0) = ω0,

and so, C|Γ(C,ΩC/k) is surjective if, and only if, a0 6= 0.

We now briefly recall what it means to say that a Mochizuki lift of C is Mochizuki-ordinary. Let

TCσ/k and TC/k denote the relative tangent bundles of Cσ/k and C/k respectively, and let

HE : φ∗(TCσ/k) → TC/k
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be the square Hasse invariant of an indigenous bundle (E ,∇E ) ([Moc96], Proposition 2.6(1), pg.

1032).

Dualizing HE yields

H∨
E : ΩC/k → φ∗(ΩCσ/k) ∼= Ω⊗3

C/k.

Tensoring with ΩC/k gives a map

id⊗H∨
E : Ω⊗2

C/k → ΩC/k ⊗ φ∗(ΩCσ/k),

and now pushing forward by φ yields

φ∗(id⊗H∨
E ) : φ∗(Ω

⊗2
C/k) → φ∗(ΩC/k) ⊗ ΩCσ/k. (11.2)

Next we recall that there is a Cartier isomorphism (see [Kat70])

C̃ : H1(φ∗Ω
•
C/k) → ΩCσ/k,

related to the Cartier operator C as follows: if we also denote by C̃ the map between φ∗(ΩC/k) and

ΩCσ/k (having the exact differentials as its kernel) that induces C̃ : H1(φ∗Ω
•
C/k) → ΩCσ/k, then for

all ω ∈ Γ(C, φ∗(ΩC/k)) one has C̃(ω) = C(ω)σ. The Cartier isomorphism induces a map

C̃ ⊗ id : φ∗(ΩC/k) ⊗ ΩCσ/k → Ω⊗2
Cσ/k (11.3)

The composition of the maps given by equations (11.2) and (11.3) induces a map on global sections

V : Γ(C,Ω⊗2
C/k

) → Γ(Cσ,Ω⊗2
Cσ/k),

called the Verschiebung. (This is the analogue of the map Φω
E on pg. 1037 of [Moc96].) Now, by

Definition 3.1 on pg. 1044 and Proposition 2.12 on pg. 1037 of [Moc96], the curve the Mochizuki

lift of C/k is Mochizuki-ordinary if V is surjective.

We now prove that if C/k is given by (11.1), then V is surjective if, and only if, a0 6= 0. This

proof was also outlined by the referee (and was further clarified to the author by S. Mochizuki).

To understand V, we first look at the square Hasse invariant HE . This map (and its dual) is

determined by the “multiplication” by a quadratic differential θ0 on C/k. By Proposition 2.6 on

pg. 1032 of [Moc96], the divisor of zeros of such a quadratic differential is the double supersingular

locus of C/k, i.e., its support is the set of points where the lift of the Frobenius is not defined. In

our case, these points are the points at infinity, and hence θ0 has to be a non-zero constant multiple

of ω2
0, and we can assume that θ0 = ω2

0. Hence,

H∨
E ((λ1x0 + λ0)ω0) = (λ1x0 + λ0)ω

σ
0 ≈ (λ1x0 + λ0)ω

3
0, (11.4)

where “≈” is the identification via the isomorphism between φ∗(ΩCσ/k) and Ω⊗3
C/k.
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Let θ1
def
= x0 θ0 and θ2

def
= x2

0 θ0. Then, equation (11.4) implies that the map induced by (11.2)

on global sections is given by

λ2θ2 + λ1θ1 + λ0θ0 7→ (λ2x
2
0 + λ1x0 + λ0)ω0 ⊗ ωσ

0 .

Hence

V(λ2θ2 + λ1θ1 + λ0θ0) = C̃((λ2x
2
0 + λ1x0 + λ0)ω0) ⊗ ωσ

0 .

Therefore,

V(θ0) = θσ
0 ,

V(θ1) = a0θ
σ
1 + b0θ

σ
0 ,

V(θ2) = θσ
2 + c0θ

σ
0 ,

which clearly is surjective if, and only if, a0 6= 0.

This shows that the two notions of ordinariness are the same in the present situation and finishes

the proof of Theorem 2.8.
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