
DENOMINATORS OF THE WEIERSTRASS COEFFICIENTS OF THE

CANONICAL LIFTING
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Abstract. Given an ordinary elliptic curve E/k : y20 = x30 + a0x0 + b0 over a field k of

characteristic p ≥ 5 with j-invariant j0, the j-invariant of its canonical lifting E/W(k) :

y2 = x3 +ax+b is j = (j0, J1(j0), J2(j0), . . .), for some Ji ∈ Fp(X). Thus the Weierstrass

coefficients of E can be given by a = λ4 · 27j/(6912 − 4j), b = λ6 · 27j/(6912 − 4j),

where λ = ((b0/a0)1/2, 0, 0, . . .), and therefore can be seen as functions on (a0, b0). Here

we study the denominators of the coordinates of these a and b. We show that the only

possible factors for these denominators are powers of a0, b0, and the Hasse invariant h.

Upper bounds for these powers are given for each one of them.

1. Introduction

In this introduction we shall give a general idea of the main focus and results of this paper,

while in order to not overextend this overview, we shall leave more precise definitions and

statements for the following sections.

The main topic of this paper is explicit computations of the Weierstrass coefficients of

the canonical lifting. In [Fin19] the first author gave an algorithm to produce formulas for

these coefficients and then discussed their properties. The formulas are not unique, since

the canonical lifting is only unique up to isomorphism, and so the Weierstrass coefficients

can be changed. But the formulas derived in this reference have many desirable properties.

More precisely, here is one of the its main results, namely [Fin19, Theorem 2.3]:

Theorem 1.1. Given a prime p ≥ 5, there are (explicitly computable) rational functions

Ai, Bi ∈ U def
= Fp[a, b, 1/(∆h)], where ∆ = 4a3 + 27b2 and h is the coefficient of xp−1

0 in

(x3
0 + ax0 + b)

(p−1)/2
, such that if k is a field of characteristic p and

E/k : y2
0 = x3

0 + a0x0 + b0

is any ordinary elliptic curve, then the elliptic curve over the ring of Witt vectors W(k)

given by

E/W(k) : y2 = x3 + ax+ b,
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with a = (a0, A1(a0, b0), A2(a0, b0), . . .), and b = (b0, B1(a0, b0), B2(a0, b0), . . .), is the canon-

ical lifting of E.

Moreover, if a and b have weights 4 and 6 respectively, then these functions can be taken

so that Ai and Bi are modular functions of weights 4pi and 6pi respectively.

The algorithm described in [Fin19] allows us to compute many explicit examples, and

some of these can be found in the first author’s GitHub page, more precisely, at https:

//github.com/lrfinotti/cl_examples.

Inspecting these examples (and others), one notices that this algorithm seems to always

give Ai, Bi ∈ U∆
def
= Fp[a, b, 1/h], i.e., it seems that ∆ does not show up in the denominators.

This led us to the following conjecture:

Conjecture 1.2. There are modular functions Ai and Bi as described in Theorem 1.1 with

Ai, Bi ∈ U∆
def
= Fp[a, b, 1/h]. Moreover, the algorithm given in [Fin19] yields such modular

functions.

The problem is that it is not trivial to obtain a precise description of the denominators

from the algorithm in question. In fact, the result that Ai, Bi ∈ U in the first place, follows

from theoretical considerations, not from an analysis of the algorithm.

On the other hand, the j-invariant of the canonical lifting has been extensively studied by

the first author (see, for instance, [Fin13]) and these can also be used to obtain (different)

formulas for its Weierstrass coefficients. These known results about the j-invariant allow us

to obtain more detailed information about the Weierstrass coefficients (when computed this

way), and will be the approach we shall take here. (This will be more carefully discussed

in Section 3.) In particular, we can get more precise information about the denominators

of the rational functions that appear in these coefficients, unlike when using the algorithm

from [Fin19], taking us closer the first part of Conjecture 1.2.

Unfortunately this approach has its own problems as, although the Ai’s and Bi’s obtained

this way are indeed modular functions of the stated weight (as in Theorem 1.1), these may

fail to be defined for every ordinary elliptic curve: in principle they give Ai, Bi ∈ V def
=

Fp[a, b, 1/(∆ · h · a · b)], and so these might not work when the j-invariant of the ordinary

elliptic curve in characteristic p is either 0 or 1728.

Although one cannot immediately remove the a’s and b’s from the denominators, we do

prove that the formulas are in fact in V∆
def
= Fp[a, b, 1/(h · a · b)]. (See Theorem 9.2 below.)

In particular, if p ≡ 11 (mod 12), then it’s known that a, b | h, which implies that U∆ = V∆,

and therefore this result proves the first part of Conjecture 1.2 for p ≡ 11 (mod 12). (This

is stated as Corollary 9.3 below.)

https://github.com/lrfinotti/cl_examples
https://github.com/lrfinotti/cl_examples
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It’s also worth observing that although having single formulas (with “good” properties)

that work in all cases is desirable, the cases when the ordinary elliptic curve has either

a0 = 0 (i.e., j-invariant 0) or b0 = 0 (i.e., j-invariant 1728), for which these new formulas

might fail, have well known canonical liftings: their canonical liftings have j-invariant j = 0

and j = 1728 respectively. Thus, in these cases we can take Ai = Bi = 0 for all i ≥ 1. In

other words, the formulas lose some of their desired properties, namely, the continuity at

a = 0 and/or b = 0, but we do know values for Ai and Bi that work in those cases.

Finally, this new method also allows us to obtain a better description of the actual

denominators of Ai and Bi: since Ai, Bi ∈ V∆, the denominators can only contain powers

of a, b, or of factors of h, and we give upper bounds for these powers. More precisely,

Corollary 10.2 gives sharp upper bounds for the power of factors of h different from a and b

(if either is a factor of h), while Theorem 11.3 gives upper bounds for the powers of a and b.

These last bounds are far from sharp (as Table 11.1 shows), but in the last section, sharp

bounds in the case of A1 and B1 are given.

2. Terminology and Definitions

We now introduce some notation and review some of the theory that will be needed

throughout this paper.

Let k be a perfect field of characteristic p > 0. Associated to an ordinary elliptic curve E

over k, there exists a unique (up to isomorphisms) elliptic curve E over W(k), the ring of

Witt vectors over k, called the canonical lifting of E, and a map τ : E(k̄)→ E(W(k̄)), i.e.,

a lift of points, called the elliptic Teichmüller lift, characterized by the following properties:

(1) the reduction modulo p of E is E;

(2) τ is an injective group homomorphism and a section of the reduction modulo p,

which we denote by π;

(3) let σ denote the Frobenius of both k and W(k); if φ : E → Eσ denotes the p-th

power Frobenius, then there exists a map φ : E → Eσ, such that the diagram

E(W(k))
φ
//

π

��

Eσ(W(k))

π

��
E(k)

φ
//

τ

TT

Eσ(k)

τσ

TT

commutes. (In other words, there exists a lifting of the Frobenius.)

This concept of canonical lifting of elliptic curves was first introduced by Deuring in [Deu41]

and then generalized to Abelian varieties by Serre and Tate in [LST64]. Apart from being
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of independent interest, this theory has been used in many interesting applications, such as

counting rational points in ordinary elliptic curves, as in Satoh’s [Sat00], coding theory, as

in Voloch and Walker’s [VW00], and counting torsion points of curves of genus g ≥ 2, as in

Poonen’s [Poo01] or Voloch’s [Vol97].

In [Fin13] the first author studied the j-invariant of the canonical lifting E. More pre-

cisely, there are functions Ji, for i ∈ {1, 2, . . .}, such that if j0 is the j-invariant of an

ordinary elliptic curve, then

j = (j0, J1(j0), J2(j0), . . .),

is the j-invariant of its canonical lifting (as a Witt vector). We describe in the reference

above many of the properties of these functions Ji. (These are reviewed in Section 4 below.)

In a similar manner, in [Fin19] the first author studied the Weierstrass coefficients of the

canonical lifting. Before we can state the main results of this last reference, we need to

introduce some notation and terminology.

Definition 2.1. If k is a field of characteristic different from 2 and 3, we refer to the elliptic

curve given by the Weierstrass equation

E/k : y2 = x3 + ax+ b, (2.1)

simply as the curve given by (a, b). We shall implicitly assume that ∆
def
= 4a3 + 27b2 6= 0,

i.e., that the curve is non-singular.

We also need the following definition:

Definition 2.2. Let k be a field with char(k) = p ≥ 5. We define

k
2
ord

def
= {(a0, b0) ∈ k2 : 4a3

0 + 27b20 6= 0 and the curve given by (a0, b0) is ordinary}.

So, let’s fix some field k with char(k) = p ≥ 5 and (a0, b0) ∈ k2
ord. Then, the ordinary

elliptic curve

E/k : y2
0 = x3

0 + a0x0 + b0 (2.2)

has a canonical lifting, say E, given by some pair (a, b) ∈W(k)2, i.e., by

E/W(k) : y2 = x3 + ax+ b, (2.3)

where a = (a0, a1, . . .) and b = (b0, b1, . . .). Note that we are requiring that the reduction

modulo p of a and b are a0 and b0 respectively, and therefore E reduces to E.

Unlike with the j-invariant, the pair of Weierstrass coefficients (a0, b0) of E does not

uniquely determine (a, b), as the canonical lifting is unique only up to isomorphism. But
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certainly there are (non-unique) functions

Ai : k2
ord → k, Bi : k2

ord → k, for i ∈ {1, 2, 3, . . .}

such that, if (a0, b0) ∈ k2
ord, then the curve given by (a, b) ∈W(k)2, with

a = (a0, A1(a0, b0), A2(a0, b0), . . .)

b = (b0, B1(a0, b0), B2(a0, b0), . . .),

is the canonical lifting of the (ordinary) curve given by (a0, b0).

As observed in [Fin19], if we impose a0 6= 0 (i.e., j0 6= 0), then we can choose Ai, for all

i ≥ 1, to be any function, making then the choice of Bi uniquely determined, but likely

undefined at a0 = 0. Or, similarly, if it we impose b0 6= 0 (i.e., j0 6= 1728), then we can

choose Bi, for all i ≥ 1, to be any function. The problem then is that formulas obtained

this way are not necessarily defined for all pairs (a0, b0) ∈ k2
ord. This led us to the following

definition:

Definition 2.3. The functions Ai’s and Bi’s are called universal if they are defined for all

(a0, b0) ∈ k2
ord.

Also, in concrete computations it could be observed that the functions Ai’s and Bi’s were,

depending on choices made, often modular functions:

Definition 2.4. Let a and b be indeterminates in Fp[a, b], and assign them weights 4 and

6 respectively. Then, let

Sn =

{
f

g
∈ Fp(a, b) : f, g ∈ Fp[a, b] homogeneous, and wgt(f)− wgt(g) = n

}
∪ {0}.

The elements of Sn are then modular functions of weight n.

Note that the given weights make Fp[a, b] into a graded ring. Then, the sums of quotients

(in Fp(a, b)) of homogeneous polynomials in Fp[a, b] also form a graded ring S. The set Sn

is simply the homogeneous component of weight n of this graded ring.

We now can restate Theorem 1.1, the main result of [Fin19], with this terminology:

Theorem 2.5. There are (explicitly computable) universal modular functions Ai ∈ S4pi

and Bi ∈ S6pi (and, in particular, are rational functions with coefficients in Fp), for i ∈
{1, 2, 3, . . .}, such that if (a0, b0) ∈ k2

ord gives an ordinary elliptic curve, then

((a0, A1(a0, b0), A2(a0, b0), . . .), (b0, B1(a0, b0), B2(a0, b0), . . .))

gives its canonical lifting.
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Note that if we let ∆ = 4a3 + 27b2 (the discriminant) and h be the coefficient of xp−1
0 in

(x3
0 + ax0 + b)

(p−1)/2
(the Hasse invariant), then ∆ ∈ S12, h ∈ Sp−1, and the universality of

the rational functions Ai and Bi from the theorem above is equivalent to saying that they

belong to the ring U def
= Fp[a, b, 1/(∆h)], as our elliptic curve is non-singular (and hence

∆ 6= 0) and ordinary (and hence h 6= 0). In fact, observe that k2
ord = {(a0, b0) ∈ k

2 :

∆(a0, b0) · h(a0, b0) 6= 0}.
Also, as observed in the introduction, in all concrete examples computed with the al-

gorithm given in [Fin19] that gives functions as in the theorem, we seem to always get

Ai, Bi ∈ U∆
def
= Fp[a, b, 1/h], i.e., no factor of ∆ appeared in the denominator of these func-

tions, which led to Conjecture 1.2 above. But, in general, there certainly are Ai’s and Bi’s

as in Theorem 2.5 that do have ∆ in their denominators. Indeed, in [Fin19, Section 8] the

following result is proven:

Theorem 2.6. Suppose that both

((a,A1, . . . , An−1, An), (b, B1, . . . , Bn−1, Bn))

and

((a,A1, . . . , An−1, A
′
n), (b, B1, . . . , Bn−1, B

′
n))

give the Weierstrass coefficients of the canonical lifting. Then there is a function λ such

that

A′n = An + 4λap
n
, (2.4)

B′n = Bn + 6λbp
n
. (2.5)

Moreover, if Ai ∈ S4pi and Bi ∈ S6pi, for i = 1, . . . , n, and are all universal, then A′n ∈ S4pn,

B′n ∈ S6pn, and are both universal if and only if λ ∈ U ∩ S0.

So, together with the algorithm from [Fin19] to compute universal modular functions

Ai’s and Bi’s as in Theorem 2.5 above, the result above tells us how to obtain all functions

satisfying the properties of the theorem. And, depending on the choice of λ above, one

can certainly introduce ∆ in the denominator, thus obtaining An, Bn ∈ U \ U∆ (while still

satisfying all the conditions in the statement of Theorem 2.5).

Now, if this Conjecture 1.2 is true, i.e., we can get Ai’s and Bi’s without ∆ in the

denominator, then their denominators (in this case) are powers of factors of h, and it is

therefore natural to ask if one can find upper bounds for these powers.
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The problem with answering these questions is that the algorithm described involves

solving an enormous linear system, in which it is hard to control the coefficients enough to

know which denominators are introduced when solving it.

3. Choice of Ai’s and Bi’s

Since the universal modular functions from the algorithm from [Fin19] are difficult to

analyze, we turn to another way to obtain the functions Ai andBi (also described in [Fin19]):

since we can compute the canonical liftings via the j-invariants (see [Fin13], for instance),

another approach is to use the fact that if j is the j-invariant of the canonical lifting, then,

if j 6= 0, 1728, we have that

y2 = x3 +
27j

4(1728− j)
x+

27j

4(1728− j)
(3.1)

is an equation for the canonical lifting. On the other hand, this equation does not reduce

to y2
0 = x3

0 + ax0 + b, but this problem can be easily resolved by setting:

a
def
= λ4 · 27j

4(1728− j)
= (a,A1, A2, · · · ) (3.2)

b
def
= λ6 · 27j

4(1728− j)
= (b, B1, B2, · · · ), (3.3)

where

λ
def
=

((
b

a

)1/2

, 0, 0, . . .

)
. (3.4)

As observed in the introduction, the advantage of this method is that the first author has

extensively studied the j-invariant of the canonical lifting as a function of the j-invariant

of the ordinary elliptic curve in characteristic p. We shall review these results below, but

before that we observe that in the case of p = 5 this method gives

A1 = (2a12 + 3a9b2 + 3a6b4 + 3a3b6 + 3b8)/(ab4), (3.5)

B1 = (2a12b+ 3a9b3 + 3a6b5 + 3a3b7 + 3b9)/a6. (3.6)

The key issue, as perhaps to be expected from the restrictions that j 6= 0, 1728, is that

even though these functions are modular functions of the expected weights, as we see in

Theorem 5.3 below, they are not in general universal: in this example above, for instance,

the formulas do not work for the ordinary elliptic curve (in characteristic 5) given by

y2
0 = x3

0 +x0, as b0 = 0 (i.e., with j0 = 1728) and we have b in the denominator of A1. (But

do note that A1 ∈ S20 and B1 ∈ S30.)

One can find MAGMA routines to compute this choice of Ai’s and Bi’s at GitHub, more

precisely at https://github.com/lrfinotti/witt. The file lift j.m provides the routine

https://github.com/lrfinotti/witt
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> load ’lift_j.m’;

Loading "lift_j.m"

Loading "gt.m"

Loading "witt.m"

Loading "etas.m"

> jweier(5,1);

[

[

a0,

(2*a0^12 + 3*a0^9*b0^2 + 3*a0^6*b0^4 + 3*a0^3*b0^6 + 3*b0^8)/(a0*b0^4)

],

[

b0,

(2*a0^12*b0 + 3*a0^9*b0^3 + 3*a0^6*b0^5 + 3*a0^3*b0^7 + 3*b0^9)/a0^6

]

]

Figure 3.1. Example of computation of Eqs. (3.5) and (3.6).

jweier that allows one to compute these liftings. Figure 3.1 shows how one can use it to

compute the example given by Eqs. (3.5) and (3.6). The first argument of jweier is the

characteristic, and the second is the length of the lifting minus one. (So, if the second

argument is n, then the jweier gives ((a0, A1, . . . , An), (b0, B1, . . . , Bn)).)

4. Lifting the j-Invariant

We now review what we know about j. Since the canonical lifting is unique up to

isomorphism, given an ordinary elliptic curve E/k with j-invariant j0, we have that the

j-invariant of its canonical lifting is given by j = (j0, J1(j0), J2(j0), . . .) for some uniquely

defined functions Ji : kord → k, where kord denotes the set of ordinary values of j-invariants

in k. B. Mazur and J. Tate asked about the nature of these functions, which motivated the

first author to publish a few results on the subject: see [Fin10], [Fin11], [Fin12], and [Fin13].

Before we can quote the main results of these references, we need a little more notation.

Let

Sp(X)
def
=

ssp(X)

Xδ(X − 1728)ε
,

where

ssp(X)
def
=

∏
j supersing.

(X − j)

is the supersingular polynomial (as in, for instance, [Fin09]),

δ
def
=

0, if p ≡ 1 (mod 6);

1, if p ≡ 5 (mod 6);
and ε

def
=

0, if p ≡ 1 (mod 4);

1, if p ≡ 3 (mod 4).
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(Note that kord = {j0 ∈ k : ssp(j0) 6= 0}.) Hence, Sp(X) ∈ Fp[X], and Sp(0),Sp(1728) 6= 0.

(Again, see, for instance, [Fin09].) Also, let

ι =

1, if p 6= 31;

2, if p = 31.

We can now state the main result of [Fin13], more precisely, its Theorems 1.1 and 1.2:

Theorem 4.1. Let Ji, for i = 1, 2, . . . be the functions giving the j-invariant of the canonical

lifting described above.

(1) We have Ji(X) ∈ Fp(X).

(2) Let p ≥ 5, Ji = Fi/Gi, with Fi, Gi ∈ Fp[X], (Fi, Gi) = 1, and Gi monic. Also, let

si = (i−1)pi−1, ti = ((i−3)pi+ ipi−1)/3 and t′i = max{0, ti}. Then, for all i ∈ Z>0

we have:

(a) degFi − degGi = pi − ι;
(b) Gi = Sp(X)ip

i−1+(i−1)pi−2

· Hi, where H1 = 1, H2 = (X − 1728)εs2, H3 =

Xδp2(X − 1728)t, for some t ∈ {0, . . . , εs3}, and Hi | Xδt′i · (X − 1728)εsi for

i ≥ 4.

So, Theorem 4.1 above gives a relatively precise description of the denominators in the

functions Ji, which in turn we use to study the denominators of the functions Ai and Bi

coming from Eqs. (3.2) and (3.3), which is the main goal of this paper.

5. Witt Vectors

In this section we will briefly review some of the basic facts about Witt vectors. More de-

tails, including motivation and proofs, can be found in many sources such as Hazewinkel’s [Haz09]

and Borger’s [Bor11]. A more friendly introduction can be found in Rabinoff’s notes [Rab14].

Let p be a prime and for each non-negative integer n consider

W (n)(X0, . . . , Xn)
def
= Xpn

0 + pXpn−1

1 + · · ·+ pn−1Xp
n−1 + pnXn,

the corresponding Witt polynomial. Then, there exist polynomials Si, Pi ∈ Z[X0, . . . , Xi, Y0, . . . , Yi]

satisfying:

W (n)(S0, . . . , Sn) = W (n)(X0, . . . , Xn) +W (n)(Y0, . . . , Yn)

and

W (n)(P0, . . . , Pn) = W (n)(X0, . . . , Xn) ·W (n)(Y0, . . . , Yn).
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More explicitly, we have the following recursive formulas:

Sn = (Xn + Yn) +
1

p
(Xp

n−1 + Y p
n−1 − S

p
n−1) + · · ·+ 1

pn
(Xpn

0 + Y pn

0 − Sp
n

0 ) (5.1)

and

Pn =
1

pn

[
(Xpn

0 + · · ·+ pnXn)(Y pn

0 + · · ·+ pnYn)−(
P p

n

0 + · · ·+ pn−1P pn−1

)]
= (Xpn

0 Yn +Xpn−1

1 Y p
n−1 + · · ·+XnY

pn

0 )

+
1

p
(Xpn

0 Y p
n−1 + · · ·+Xp

n−1Y
pn

0 )

...

+
1

pn
(Xpn

0 Y pn

0 )− 1

pn
P p

n

0 − · · · −
1

p
P pn−1

+ p
(
Xpn−1

1 Yn +Xpn−2

2 (Y p
n−1 + pYn) + · · ·

)
.

(5.2)

Note that despite the denominators in the formulas, cancellations yield polynomials with

coefficients in Z.

We can then define sums and products of infinite vectors in AZ≥0 , where A is a commu-

tative ring (with 1), say a = (a0, a1, . . .) and b = (b0, b1, . . .), by

a+ b
def
= (S0(a0, b0), S1(a0, a1, b0, b1), . . . )

and

a · b def
= (P0(a0, b0), P1(a0, a1, b0, b1), . . . ).

These operations make AZ≥0 into a commutative ring (with 1) called the ring of Witt vectors

over A and denoted by W(A).

Since we will deal with Witt vectors over fields of characteristic p, we may use S̄n, P̄n ∈
Fp[X0, . . . , Xn, Y0, . . . , Yn], defined to be the reductions modulo p of Sn, Pn respectively, to

define the addition and the multiplication of Witt vectors.

First, observe that, if we introduce a grading on Z[X0, . . . , Xn, Y0, . . . , Yn] by defining

wgt(Xi) = wgt(Yi) = pi, then both Sn and Pn are homogeneous of weights pn and 2pn

respectively in this graded ring. This gives the following trivial lemmas:

Lemma 5.1. The monomials
∏
iX

si
i

∏
j Y

tj
j occurring in S̄n satisfies∑

i

sip
i +
∑
j

tjp
j = pn.
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Lemma 5.2. Let S(r) def
= {f = (f0, f1, . . .) ∈ W(Fp(a, b)) : fi ∈ Srpi}. Then, if f ∈ S(r)

and g ∈ S(s), we have that f · g ∈ S(r+s). Moreover, if r = s, then f + g ∈ S(r).

This lemma immediately gives us:

Theorem 5.3. The functions Ai and Bi given by Eqs. (3.2) and (3.3) are in S4pi and S6pi

respectively.

Proof. The theorem follows immediately from the lemma, noticing that Ji(1728 · 4a3/∆) ∈
S0, by the first item of Theorem 4.1, and so j ∈ S(0), and λ2 ∈ S(2) (with λ as in Eq. (3.4)).

�

Moreover, we shall need the following lemma:

Lemma 5.4. The monomials
∏
iX

si
i

∏
j Y

tj
j occurring in P̄n satisfies∑

i

sip
i =

∑
j

tjp
j = pn,

∑
i

isip
i +
∑
j

jtjp
j ≤ npn,

and, for n ≥ 1, we also have s0 + t0 ≤ pn. Moreover,

P̄n =

n∑
i=0

Xpn−i

i Y pi

n−i + Q̄n,

where Q̄n ∈ Fp[X0, . . . , Xn−1, Y0, . . . , Yn−1] and has its monomials (as above) satisfying∑
i isip

i +
∑

j jtjp
j ≤ (n− 1)pn.

Proof. The lemma, except for the s0 + t0 ≤ pn part, is [Fin02, Lemma 2.1]. Although the

lemma states ∑
i

isip
i +
∑
j

jtjp
j < npn

for the second part, its proof actually shows the result stated above.

We now prove s0 + t0 ≤ pn for n ≥ 1. We proceed by induction: we have that P1 =

Xp
0Y1 +X1Y

p
0 , so the statement is true for n = 1.

Now, assume the statement true for Pt for t ∈ {1, . . . , (n − 1)}. By Eq. (5.2), noticing

(Xpn

0 Y pn

0 )/pn − P p
n

0 /pn = 0, the statement is clear for the terms

(Xpn

0 Yn +Xpn−1

1 Y p
n−1 + · · ·+XnY

pn

0 )

+
1

p
(Xpn

0 Y p
n−1 + · · ·+Xp

n−1Y
pn

0 )

...

+
1

pn−1
(Xpn

0 Y pn−1

1 +Xpn−1

1 Y pn

0 ).
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So, it remains to check for the monomials coming from P p
n−r

r , for r = 1, . . . , (n − 1), as

the remaining terms from Eq. (5.2) are multiples of p, and hence do not affect P̄n. But a

monomial in P p
n−r

r is a product of pn−r monomials of Pr:

pn−r∏
k=1

∏
i

X
si,k
i

∏
j

Y
tj,k
j

 =
∏
i

X
∑
k si,k

i

∏
j

Y
∑
k tj,k

j .

But, by the induction hypothesis, we have that s0,k + t0,k ≤ pr, and hence

pn−r∑
k=1

s0,k +

pn−r∑
k=1

t0,k =

pn−r∑
k=1

(s0,k + t0,k) ≤ pn−rpr = pn.

�

We will also need the following lemma about the polynomials Pn:

Lemma 5.5. Let R0
def
= X0Y0 and, recursively define

Rn
def
= (Xpn

0 Yn +Xpn−1

1 Y p
n−1 + · · ·+XnY

pn

0 )

+
1

p
(Xpn

0 Y p
n−1 + · · ·+Xp

n−1Y
pn

0 )

...

+
1

pn
(Xpn

0 Y pn

0 )− 1

pn
Rp

n

0 − · · · −
1

p
Rpn−1.

Then Rn has integer coefficients and P̄n = R̄n.

Proof. The result is clear for n = 0, as P0 = R0. Now, assume for i ∈ {0, . . . , n − 1} we

have Pi = Ri + p · Ti, for some polynomials Ti with integer coefficients.

By Eq. (5.2) we have

Pn = (Xpn

0 Yn +Xpn−1

1 Y p
n−1 + · · ·+XnY

pn

0 )

+
1

p
(Xpn

0 Y p
n−1 + · · ·+Xp

n−1Y
pn

0 )

...

+
1

pn
(Xpn

0 Y pn

0 )− 1

pn
P p

n

0

− 1

pn−1
(R1 + pT1)p

n−1

− · · · − 1

p
(Rn−1 + pTn−1)p.

Now, since (Ri + pTi)
pn−i ≡ Rp

n−i

i (mod pn−i+1), we have that Pn ≡ Rn (mod p), which

finishes the proof. �
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We also observe the following basic facts about Witt vectors:

Lemma 5.6. We have:

(1) if p is odd, then

−(a0, a1, a2, . . .) = (−a0,−a1,−a2, . . .);

(2) (a0, a1, a2, . . .) ∈W(R)× if and only if a0 ∈ R×;

(3) (λ, 0, 0, . . .) · (a0, a1, a2, . . .) = (λa0, λ
pa1, λ

p2a2, . . .).

6. Valuations and Witt Vectors

In this section we state and prove a few lemmas on Witt vectors and valuations which

will be our main tools in the proofs of the main results.

First we need a couple of lemmas for sums and products. We first state a more general

lemma from which we can derive the results we actually need as particular cases.

Lemma 6.1. Let ν be a valuation (considering ν(0) =∞), u = (u0, u1, . . .), v = (v0, v1, . . .),

and suppose that, for some k ≥ 0, we have:

• ν(ui), ν(vi) ≥ 0 for i = 0, . . . , (k − 1);

• ν(ui) ≥ νi for i ≥ k, where νk < 0 and νi+1 < pνi for all i ≥ k.

Also, let u+ v = (r0, r1, . . .) and u · v = (s0, s1, . . .).

Then, ν(ri), ν(si) ≥ 0 for i ≤ k − 1, and:

(1) If ν(vk) ≥ νk and ν(vi) > νi for i > k, then ν(rn) ≥ νn for n ≥ k. Moreover, if

ν(vk) > νk = ν(uk), then ν(rk) = νk, and if ν(ui) = νi for i > k, then ν(rn) = νn

for n > k. (Note that the two “if” statements are independent.)

(2) If ν(vi) ≥ piν(v0) for i > 0, with νk < −pkν(v0), then ν(sn) ≥ νn + pnν(v0) for

n ≥ k. Moreover, if νk = ν(uk), then ν(sk) = νk + pkν(v0), and if ν(ui) = νi for

i > k, then ν(sn) = νn + pnν(v0) for n > k. (Again, these “if” statements are

independent.)

Proof. First, since ν(ui), ν(vi) ≥ 0 for i = 0, . . . , (k− 1), it is clear that ν(rn), ν(sn) ≥ 0 for

n = 0, . . . , (k − 1).

Let then
∏
iX

si
i

∏
j Y

tj
j be a monomial from S̄n different from Xn and Yn, the only

monomials containing either Xn or Yn. (Hence, we have that i, j < n.)

Then, clearly, if n = k, we have that ν
(∏

i u
si
i

∏
j v

tj
j

)
≥ 0. And since ν(uk), ν(vk) ≥ νk,

with νk < 0, we have that ν(rk) ≥ νk. And observe that if ν(vk) > νk = ν(uk), then

ν(rk) = νk.
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So now let n > k. We want to argue that ν
(∏

i u
si
i

∏
j v

tj
j

)
> νn. First note that if for

all k ≤ i < n and k ≤ j < n we have that si = tj = 0, then

ν

∏
i

usii
∏
j

v
tj
j

 ≥ ∑
k≤i<n

siνi +
∑
k≤j<n

tjνj = 0 > νn.

Now, observe that the condition on the νi’s imply that if n > i ≥ k, then νi > νn/p
n−i.

And hence, if either some si or some tj is not zero for some k ≤ i < n or some k ≤ j < n,

then, by Lemma 5.1, we also have

ν

∏
i

usii
∏
j

v
tj
j

 ≥ ∑
k≤i<n

siνi +
∑
k≤j<n

tjνj >
∑
k≤i<n

si
νn
pn−i

+
∑
k≤j<n

tj
νn
pn−j

=
νn
pn

 ∑
k≤i<n

sip
i +

∑
k≤j<n

tjp
j

 ≥ νn
pn

∑
i

sip
i +
∑
j

tjp
j

 = νn.

Therefore, since also ν(un) ≥ νn and ν(vn) > νn, we get ν(rn) ≥ νn. Note that if

ν(un) = νn, then we have ν(rn) = νn.

For the second part, first note that if k = 0, then sk = s0 = u0 · v0, and ν(s0) =

ν(u0) + ν(v0) ≥ ν0 + p0ν(v0). And notice that if ν0 = ν(u0), we have equality.

So assume now k > 0 and let now
∏
iX

si
i

∏
j Y

tj
j be a monomial from P̄n, for n ≥ k,

different from Y pn

0 Xn and Xpn

0 Yn, the only monomials containing either Xn or Yn. (Hence,

we have that i, j < n.)

For n = k, again ν
(∏

i u
si
i

∏
j v

tj
j

)
≥ 0. As k > 0, we have that ν(u0) ≥ 0 > νk, and

so ν(up
k

0 vk) > νk + pkν(v0). Since ν(vp
k

0 uk) ≥ νk + pkν(v0) and νk + pkν(v0) < 0 (by

hypothesis), we have ν(sk) ≥ νk + pkν(v0), and observe that if ν(uk) = νk, we have the

equality. (This concludes the case n = k for both cases, k = 0 and k > 0.)

So, assume now n > k. We want to argue that ν
(∏

i u
si
i

∏
j v

tj
j

)
> νn+pnν(v0). If si = 0

for all i with k ≤ i < n, then, by Lemma 5.4, we have

ν

∏
i

usii
∏
j

v
tj
j

 ≥ ∑
k≤i<n

siνi +
∑
j

tjp
jν(v0)

= ν(v0)
∑
j

tjp
j = pnν(v0) > νn + pnν(v0).
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Now, if si0 6= 0 for some k ≤ i0 < n, then, as again νi > νn/p
n−i, we would have by

Lemma 5.4,

ν

∏
i

usii
∏
j

v
tj
j

 ≥ ∑
k≤i<n

siνi +
∑
j

tjp
jν(v0)

>
∑
k≤i<n

si
νn
pn−i

+ ν(v0)
∑
j

tjp
j

=
νn
pn

∑
k≤i<n

sip
i + ν(v0)

∑
j

tjp
j

≥ νn
pn

∑
i

sip
i + ν(v0)

∑
j

tjp
j

= νn + pnν(v0).

Now, ν(up
n

0 vn) ≥ pnν(u0) + ν(vn) ≥ pnν(u0) + pnν(v0). If k = 0, and as n > k, then

νn < pnν0 ≤ pnν(u0), and so ν(up
n

0 vn) > νn + pnν(v0). If k > 0, then ν(u0) ≥ 0 > νn, and

again ν(up
n

0 vn) > νn + pnν(v0).

Finally, we have ν(vp
n

0 un) ≥ νn+pnν(v0), and hence ν(sn) ≥ νn+pnν(v0), and note that

if ν(un) = νn, then we have ν(sn) = νn + pnν(v0). �

In Section 10 we shall use the following particular case of Lemma 6.1:

Lemma 6.2. Let ν be a valuation (considering ν(0) =∞), u = (u0, u1, . . .), v = (v0, v1, . . .),

and suppose that ν(ui) ≥ νi, with ν0 ≤ 0 and νi+1 < pνi for all i. Then, if u+v = (r0, r1, . . .)

and u · v = (s0, s1, . . .), we have:

(1) If ν(v0) ≥ ν0 and ν(vi) > νi for all i ≥ 1, then ν(rn) ≥ νn for n ≥ 1. Moreover, if

ν(ui) = νi for all i, then ν(rn) = νn for n ≥ 1.

(2) Now, if ν0 < 0, assume ν0 < −ν(v0), while if ν0 = 0, assume both ν1 < −pν(v0)

and ν(v0) ≥ 0. Then, in either case, we have that if ν(vi) ≥ piν(v0) for all i,

then ν(sn) ≥ νn + pnν(v0) for n ≥ 1. Moreover, if ν(ui) = νi for all i, then

ν(sn) = νn + pnν(v0) for n ≥ 1.

Proof. The lemma immediately follows from Lemma 6.1 with k = 0 if ν0 < 0 or k = 1 if

ν0 = 0. �

In Section 11 we need the following particular case of Lemma 6.1:
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Lemma 6.3. Let k be a non-negative integer, ν be a valuation (considering ν(0) = ∞),

u = (u0, u1, . . .), v = (v0, v1, . . .), u + v = (r0, r1, . . .), and u · v = (s0, s1, . . .). Assume

also:

• ν(ui) ≥ 0 for i = 0, . . . , (k − 1);

• ν(ui) ≥ νi for i ≥ k, where νk < 0 and νi+1 < pνi for all i ≥ k;

• ν(v0) = 0;

• ν(vi) ≥ 0 for all i ≥ 1.

We then have:

(1) ν(rn) ≥ 0 for n = 0, . . . , (k − 1) and ν(rn) ≥ νn for n ≥ k.

(2) ν(sn) ≥ 0 for n = 0, . . . , (k − 1) and ν(sn) ≥ νn for n ≥ k.

Moreover, if we also have ν(ui) = νi for i ≥ k, then ν(rn) = ν(sn) = νn for all n ≥ k.

Proof. The lemma immediately follows from Lemma 6.1, since ν(vi) ≥ 0 > νi for i ≥ k, and

ν(vi) ≥ 0 = piν(v0) for i > 0. �

We also need the two following lemmas to deal with inverses.

Lemma 6.4. Let k be a positive integer, ν be a valuation (considering ν(0) = ∞), u =

(u0, u1, . . .), and suppose that:

• ν(u0) = 0;

• ν(ui) ≥ 0 for i = 1, . . . , (k − 1);

• there are α, β ∈ R>0 such that ν(ui) ≥ νi
def
= pi(α − βi), for all i ≥ k, and with

α− βk < 0.

Then, if u−1 = (v0, v1, . . .), we have that ν(vi) ≥ 0 for i = 1, . . . , (k − 1) and ν(vi) ≥ νi for

all i ≥ k. Moreover, if ν(ui) = νi for i ≥ k, then we have that ν(vi) = νi for i ≥ k.

Proof. Since ν(u0) = 0, it is clear that ν(v0) = ν(1/u0) = 0 and, from Item 2 of Lemma 5.6,

that ν(vi) ≥ 0 for i < k.

As k ≥ 1, we have Pk(u0, . . . , uk, v0, . . . , vk) = 0, and by Eq. (5.2) we get that ν(up
k

0 vk +

ukv
pk

0 ) ≥ 0. Now, if ν(vk) < νk, then ν(up
k

0 vk) < ν(ukv
pk

0 ) = νk < 0, and hence ν(up
k

0 vk +

ukv
pk

0 ) = ν(vk) < 0, a contradiction. Therefore, ν(vk) ≥ νk. Moreover, if ν(uk) = νk, we

must also have ν(vk) = νk.

So, now let n > k. By Lemma 5.5 we have that Rn(u0, . . . , un, v0, . . . , vn) = 0. Now let

m = M(u0, . . . , un, v0, . . . , vn), where M is a monomial from Rn, different from Xpn

0 Yn and

XnY
pn

0 , i.e., M involves neither Xn nor Yn. We prove, by induction on n that ν(m) > νn,

which suffices to finish the proof.
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Observing that νk < 0, the case n = k can be seen in the argument above. So, assume true

for all i ∈ {k, . . . , n− 1}. By Lemma 5.5, we have that either M is of the form Xpn−i

i Y pn−j

j ,

with i+ j ≤ n, or it is a monomial coming from Rp
n−i

i for some i ∈ {1, . . . , n− 1}.
If M comes from Rp

n−i

i for some i ∈ {1, . . . , k − 1}, then clearly ν(m) = 0 > νn. If M

comes from Rp
n−i

i for some i ∈ {k, . . . , n − 1}, then, by the induction hypothesis, ν(m) ≥
pn−iνi = pn(α− βi) > νn, as β > 0.

So, assume M = Xpn−i

i Y pn−j

j , with i + j ≤ n, and i, j 6= n. If i and j are less than k,

then clearly ν(m) ≥ 0 > νn.

If i ≥ k and j < k, then ν(m) ≥ pn(α − βi) > νn. Similarly, if i < k and j ≥ k, then

ν(m) ≥ pn(α− βj) > νn.

Finally, if i, j ≥ k, then ν(m) ≥ pn(α−βi)+pn(α−βj) = pn(2α−β(i+j)) ≥ pn(2α−βn) >

νn, as α > 0. �

Lemma 6.5. Let ν be a valuation, u = (u0, u1, . . .), with ν0
def
= ν(u0) > 0, ν(u1) ≥ 0 and

ν(ui) > −pi(i− 1)ν0 for i ≥ 2. Then, if u−1 = (v0, v1, . . .), we have ν(vn) ≥ −pn(n+ 1)ν0

for n ≥ 0. Moreover, if ν(u1) = 0, then ν(vn) = −pn(n+ 1)ν0 for n ≥ 0.

Proof. Notice first that ν(v0) = ν(1/u0) = −ν0.

We again prove it by induction. Let n ≥ 1 and
∏
iX

si
i

∏
j Y

tj
j be a monomial from P̄n

coming from Q̄n, as in Lemma 5.4. Then:

ν

∏
i

usii
∏
j

v
tj
j

 ≥ s0ν0 −
∑
i≥1

sip
i(i− 1)ν0 −

∑
j

tjp
j(j + 1)ν0

≥ ν0

s0 −

∑
i≥1

siip
i +
∑
j

tjjp
j

+
∑
i≥1

sip
i −
∑
j

tjp
j


≥ −pn(n− 1)ν0 > −pnnν0.

Now, for i ∈ {2, . . . , n}, we have ν(up
n−i

i vp
i

n−i) > −pn(i−1)ν0−pn(n− i+1)ν0 = −pnnν0,

while ν(up
n−1

1 vpn−1) ≥ pn−1ν(u1) − pnnν0 ≥ −pnnν0, with equalities if ν(u1) = 0, and

ν(up
n

0 vn) = ν0p
n + ν(vn). Since

up
n

0 vn +

[
n∑
i=1

up
n−i

i vp
i

n−i

]
+ Q̄n(u0, . . . , un−1, v0, . . . , vn−1) = Pn(u,v) = 0,

we have ν(vn) ≥ −pn(n+ 1)ν0, with equality if ν(u1) = 0. �
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7. Supersingular Polynomial and the Hasse Invariant

Since we will switch from functions on the j-invariant j, to functions on the Weierstrass

coefficients (a, b), we need to relate the supersingular polynomial ssp, which tells when the

elliptic curve with j-invariant j is supersingular, to the Hasse invariant h, which tells us

when an elliptic curve given by the Weierstrass coefficients (a, b) is supersingular. (Most of

what we discuss here can be found in [Fin09].)

As a consequence of [Fin09, Lemma 2.2], we can easily see that the Hasse invariant is

given by

h =

r2∑
i=r1

(
r

i

)(
i

3i− r

)
a3i−rbr−2i, (7.1)

where r
def
= (p−1)/2, r1

def
= dr/3e, and r2

def
= br/2c. (We shall keep this notation throughout

this paper.)

Moreover, in [Fin09, Sections 2 and 3], we see that

Sp (j) =

(
−2

9

)r(1728

∆

)r2−r1 (−27)r2

4r1
1

a3r1−rbr−2r2
h, (7.2)

where j
def
= 1728 · 4a3/∆, with ∆ = 4a3 + 27b2. (Note that leading coefficient in [Fin09] is

incorrect, and was fixed in the formula above.)

This immediately gives the following proposition:

Proposition 7.1. The denominator of the function Ji(j) ∈ Fp(a, b) (with j as above)

involves only powers of ∆, h, a, and b, i.e., Ji(j) ∈ V def
= Fp[a, b, 1/(∆ · h · a · b)].

Proof. By Theorem 4.1, the denominator of Ji involves only powers of X, which gives a

denominator that is a power of a in Ji(j), X − 1728, which gives a denominator that is a

power of b in Ji(j), and Sp(X), which gives a power of h in Ji(j) by Eq. (7.2).

Finally, again by Theorem 4.1, the numerator Ji has degree larger than its denominator

(as polynomials in X), and therefore can introduce powers of ∆ in the denominator of Ji(j)

(as a rational function in (a, b)). �

8. General Denominator

We now start the study the denominators of the functions Ai and Bi given by Eqs. (3.2)

and (3.3). We start by finding what are the possible denominators of these functions:

Theorem 8.1. The functions Ai and Bi given by Eqs. (3.2) and (3.3) are in the ring V.

Proof. By Proposition 7.1, as j = (j, J1(j), J2(j), . . .) (the j-invariant of the canonical lifting

of the curve given by (a, b)), then we have that 27j, 4(1728 − j) ∈W(V). Clearly we also
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have that λ2 ∈W(V). Furthermore, observe that 4(1728− j) = (1728 · 4 · 27b2/∆, · · · ), and

so, since 1728 · 4 · 27b2/∆ is a unit of V, we have that (4(1728− j))−1 ∈W(V). Therefore,

we have that a and b from Eqs. (3.2) and (3.3) are in W(V). �

We now turn our attention to what powers of ∆, h, a, and b appear in the denominators

of Ai and Bi. The typical tool to do so is valuations. But, observe that while a, b, and ∆

are irreducibles in Fp[a, b], we have that h might not be so. For instance, for p = 11 we have

that h = 9ab. Moreover, in some cases, like for p = 5, where h = 2a, tracking powers of

h is the same as tracking powers of a. Some of these will be introduced by h coming from

Eq. (7.2), while some will come from the a in the denominator of λ (from Eq. (3.4)).

Hence, it is harder to actually track powers of h showing in the denominators. The

approach we take here is to view the h coming from Eq. (7.2) as an unknown, rather than

an expression on a and b, as this is the only place where h is explicitly introduced. To

avoid confusion, we will use H for this new variable, while keeping h ∈ Fp[a, b] as defined by

Eq. (7.1). So, in Eq. (7.2) we replace Sp(j) by

Ŝp
def
=

(
−2

9

)r(1728

∆

)r2−r1 (−27)r2

4r1
1

a3r1−rbr−2r2
H. (8.1)

Again, to avoid confusion, we consider Âi, B̂i ∈ V̂ def
= Fp[a, b,H, 1/(∆ ·H ·a ·b)] corresponding

to Ai and Bi, respectively, when replacing h with the variable H in the term coming from Sp.
Thus, we have that Ai(a, b) = Âi(a, b, h) and Bi(a, b) = B̂i(a, b, h). Similarly, we introduce

Ĵi ∈ V̂ as Ji(j), but again with the h replaced by the variable H.

So, in the next sections we shall look at ν(Âi) and ν(B̂i), where ν is one of the valuations

νa, νb, ν∆, or νH, i.e., valuations of Fp(a, b,H) at a, b, ∆, and H respectively.

9. Powers of ∆

We first prove the following result:

Lemma 9.1. We have that ∆ - h, i.e., ∆ and h are relatively prime in Fp[a, b].

Proof. From Eq. (7.2) we have that

h = c ·∆r2−r1 · a3r1−rbr−2r2Sp(j),

with c ∈ Fp. Since deg(Sp) = r2 − r1 (see, for instance, [Fin09] again) and Sp ∈ Fp[X], we

have that

ν∆(h) = (r2 − r1) + ν∆(Sp(j)) = (r2 − r1) + deg(Sp) · ν∆(j) = 0.

�



20 LUÍS R. A. FINOTTI AND DELONG LI

The main goal now is to prove the following theorem:

Theorem 9.2. We have that ν∆(Âi), ν∆(B̂i) ≥ 0, i.e., Âi, B̂i ∈ V̂∆
def
= Fp[a, b,H, 1/(H·a·b)].

Therefore, by Lemma 9.1, ∆ does not appear in the denominator of either Ai or Bi.

Note that this result is similar to Conjecture 1.2, which states that, as observed in concrete

examples, the (universal) Ai’s and Bi’s coming from the algorithm described in [Fin19] do

not seem to have ∆ in their denominators, i.e., are in U∆
def
= Fp[a, b, 1/h]. In fact, the

theorem has the following corollary:

Corollary 9.3. For p ≡ 11 (mod 12) there are universal modular functions Ai and Bi

giving the canonical lifting, as in Theorem 2.5, with Ai, Bi ∈ U∆.

Proof. Just observe that by Eq. (7.1), for p ≡ 11 (mod 12) we have that a, b | h. �

Note that this corollary does not prove Conjecture 1.2 in the case of p ≡ 11 (mod 12),

as the Ai’s and Bi’s from its statement come from a specific (and different) algorithm, but

it is closely related, as it gives functions with the same required properties.

We shall need the following lemma (to prove Theorem 9.2):

Lemma 9.4. We have that ν∆(Ĵi) = −pi + ι.

Proof. With the notation of Theorem 4.1 we have that

Ĵi =
Fi(j)

Ŝmip ·Hi(j)
,

with Ŝp as in Eq. (8.1) and mi
def
= ipi−1 + (i − 1)pi−2. Now, since degSp = r2 − r1, as

observed above, we have that ν∆(Ŝp) = −(r2 − r1) = −deg(Sp).
So, by Theorem 4.1, we have

ν∆(Ĵi) = ν∆(Fi(j))−miν∆(Ŝp)− ν∆(Hi(j))

= −deg(Fi) +mi deg(Sp) + deg(Hi)

= −deg(Fi) + deg(Gi) = −pi + ι.

�

We can now proceed with the proof of the theorem:

Proof of Theorem 9.2. Let ĵ
def
= (j, Ĵ1, Ĵ2, . . .) and τ(∆) = (∆, 0, 0, . . .), the Teichmüller lift

of ∆. Then, by the previous lemma, we have that

27 · τ(∆) · ĵ = 27 · (1728 · 4a3,∆pĴ1,∆
p2 Ĵ2, . . .) ∈W(V̂∆).
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Similarly,

4 · τ(∆) · (1728− ĵ) = 4 · 1728 · τ(∆)− 4 · τ(∆) · ĵ = (4 · 1728 · 27b2, . . .) ∈W(V̂∆).

Moreover, since 4 · 1728 · 27 · b2 is a unit of V̂∆, we have that 4 · τ(∆) · (1728− ĵ) is a unit

of W(V̂∆), and hence,

27ĵ

4(1728− ĵ)
=

τ(∆) · 27ĵ

τ(∆) · 4(1728− ĵ)
∈W(V̂∆).

Since clearly λ2 = (b/a, 0, 0, . . .) ∈ W(V̂∆), we have that Âi, B̂i ∈ V̂∆ (by Eqs. (3.2)

and (3.3)). �

10. Powers of h

We now turn to powers of H. First we observe that, by Eq. (8.1) and Theorem 4.1, we

have that if m0
def
= 0 and mi

def
= ipi−1 + (i− 1)pi−2 for i ≥ 1, then νH(Ĵi) = −mi. We prove

the following result:

Theorem 10.1. We have that νH(Âi), νH(B̂i) = −mi = −(ipi−1 + (i− 1)pi−2).

Proof. Let again Ĵ = (Ĵ0, Ĵ1, Ĵ2, . . .), with Ĵ0
def
= j. Then, we have that νH(Ĵ0) = 0,

νH(Ĵ1) = −m1 = −1 < p · 0, and for i ≥ 1, we have

νH(Ĵi+1) = −mi+1 = −(i+ 1)pi − ipi−1 = −p[(i+ 1)pi−1 + ipi−2]

< −p[ipi−1 + (i− 1)pi−2] = −pmi = p νH(Ĵi).

Then, by Lemma 6.2, we have that if 1728− ĵ = (r0, r1, . . .), then νH(ri) = νH(Ĵi) = −mi

for all i ≥ 0. Now, by Lemma 6.4 (with k = 1, α = 1/p2, and β = (p + 1)/p2), we have

that if (1728− ĵ)−1
= (s0, s1, . . .), then νH(si) = νH(ri) = −mi. And, finally, applying

Lemma 6.2 a few more times, we have that

27λ4

4

(
1728 · 1

1728− ĵ
− 1

)
= λ4 · 27ĵ

4(1728− ĵ)
= (a, Â1, Â2, . . .), (10.1)

27λ6

4

(
1728 · 1

1728− ĵ
− 1

)
= λ6 · 27ĵ

4(1728− ĵ)
= (b, B̂1, B̂2, . . .), (10.2)

are such that νH(Âi) = νH(B̂i) = −mi. �

So, Theorem 10.1 gives an equality for the valuations νH(Âi) and νH(B̂i), but how does

this translate to the powers of h in the denominators of Ai and Bi? As seen in Eq. (3.6),

for which p = 5 and so h = 2a, we see h6 appearing in the denominator. But the problem

here is that, as we observed before, extra powers of a and b can appear in the denominator.
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(We shall discuss these in more details in the next section.) So, it is not surprising that a

larger power shows up. Similar problems occur for p = 7 and p = 11, for which h = 3b and

h = 9ab respectively. For p = 13 and p = 17, for which h = 7a3 + 2b2 and h = 2a4 + 15ab2

respectively, we see the exact powers m1 and m2 appearing on the denominators of Ai and

Bi for i = 1, 2 (along with some extra factors of a and b).

In general, we can expect a power less than or equal to mi in the denominators of Ai

and Bi (with some extra factors of a and b), as, although unlikely, the numerator might be

itself divisible by h, or by factors of h, which Theorem 10.1 does not account for. I.e., we

have:

Corollary 10.2. Let h ∈ Fp[a, b] be an irreducible factor of h, with h 6= a, b. Then, for

i ≥ 1, we have νh(Ai), νh(Bi) ≥ −νh(h)mi = −νh(h)
(
ipi−1 + (i− 1)pi−2

)
.

The authors verified in MAGMA that for p ≤ 997 the Hasse invariant h has no repeated

irreducible factor, i.e, νh(h) = 1 for all irreducible factors h of h, but they are unaware if

this is true in general.

11. Powers of a and b

We now turn our attention to a and b. Our main tool, Theorem 4.1, does not give as much

information in this case, as it only gives upper bounds for the powers of X and X − 1728 in

the denominator of Ji(X). This limitation makes the bounds given in this section be very

far from sharp.

In any event, we have:

Theorem 11.1. We have:

(1) If p ≡ 1 (mod 6), then νa(Ĵi) ≥ 0 for all i.

(2) If p ≡ 5 (mod 6), then νa(Ĵ1) ≥ 1, νa(Ĵ2) ≥ (2p+ 1), νa(Ĵ3) = 2p, and for i ≥ 4 we

have νa(Ĵi) ≥ −((i− 3)pi − (i− 1)pi−2).

(3) If p ≡ 1 (mod 4), then νb(Ĵi) ≥ 0 for all i.

(4) If p ≡ 3 (mod 4), then νb(Ĵ1) ≥ 1, νb(Ĵ2) = 1, and for i ≥ 3 we have that νb(Ĵi) ≥
−((i− 2)pi−1 − (i− 1)pi−2).

Proof. Equation (8.1) gives us that νa(Ŝp) = −(3r1−r) = −δ and νb(Ŝp) = −(r−2r2) = −ε
(with ε and δ as defined in Section 4). Since

Ĵi =
Fi(j)

Ŝmip ·Hi(j)
,

with mi
def
= ipi−1+(i−1)pi−2, we have, for ν either νa or νb, that ν(Ĵi) = ν(Fi(j))−miν(Ŝp)−

ν(Hi(j)). Observe that if Hi = Xα(X − 1728)β, then νa(Hi(j)) = 3α and νb(Hi(j)) = 2β.
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Thus, from Theorem 4.1, we have:

νa(Ĵ1) = νa(F1(j)) + δ ≥ δ, νb(Ĵ1) = νb(F1(j)) + ε ≥ ε. (11.1)

Also

νa(Ĵ2) = νa(F2(j)) + (2p+ 1)δ ≥ (2p+ 1)δ,

νb(Ĵ2) = νb(F2(j)) + (2p+ 1)ε− 2pε ≥ ε,

noting that we have equality if ε = 1 (since (F2, G2) = 1),

νa(Ĵ3) = νa(F3(j)) + (3p2 + 2p)δ − 3δp2 ≥ 2pδ,

with equality if δ = 1,

νb(Ĵi) ≥ νb(Fi(j)) +miε− 2siε

= νb(Fi(j))− ((i− 2)pi−1 − (i− 1)pi−2)ε

≥ −((i− 2)pi−1 − (i− 1)pi−2)ε

for i ≥ 3, and finally,

νa(Ĵi) ≥ νa(Fi(j)) +miδ − 3tiδ

= νa(Fi(j))− ((i− 3)pi − (i− 1)pi−2)δ

≥ −((i− 3)pi − (i− 1)pi−2)δ

for i ≥ 4. �

Here is the main theorem of this section:

Theorem 11.2. We have:

(1) If p ≡ 1 (mod 6), then:

(a) νa(Âi) ≥ −2pi for i ≥ 1;

(b) νa(B̂i) ≥ −3pi for i ≥ 1.

(2) If p ≡ 5 (mod 6), then:

(a) νa(Âi) ≥ −2pi, for i = 1, 2, 3, and νa(Âi) ≥ −((i− 1)pi− (i− 1)pi−2) for i ≥ 4;

(b) νa(B̂i) ≥ −3pi for i = 1, 2, 3, and νa(B̂i) ≥ −(ipi − (i− 1)pi−2) for i ≥ 4.

(3) For every p ≥ 5 we have:

(a) νb(Âi) ≥ −2ipi, for all i ≥ 1;

(b) νb(B̂i) ≥ −(2i− 1)pi, for all i ≥ 1.
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Proof. Although we have many cases to prove, the basic idea will be the same for all.

Theorem 11.1 deals with

ĵ = (j, Ĵ1, Ĵ2, . . .).

Then, we apply Lemma 6.3 to get valuations of the coordinates of

1728− ĵ = (u0, u1, . . .).

With either Lemma 6.4 or Lemma 6.5 we can get valuations of

(1728− ĵ)−1
= (v0, v1, . . .).

Using either Lemma 6.2 or Lemma 6.3 again, we get the valuations of

27

4

(
1728 · 1

1728− ĵ
− 1

)
= (w0, w1, . . .),

in fact, the lemmas give that ν(vi) and ν(wi) satisfy the same bounds. Then, by Eqs. (10.1)

and (10.2), we get that

νa(Âi) = νa(wi)− 2pi, νa(B̂i) = νa(wi)− 3pi,

νb(Âi) = νb(wi) + 2pi, νb(B̂i) = νb(wi) + 3pi.

(We shall keep the notation for the ui’s, vi’s, and wi’s above throughout this proof.)

If p ≡ 1 (mod 6), then, by Theorem 11.1, we have that Ĵi ∈ Ua, where Ua
def
= Fp[a, b,H, 1/(∆Hb)].

Moreover,

1728− j = 1728
27b2

4a3 + 27b2
,

so, 1728− ĵ ∈W(Ua).
Then, since (1728− j)−1 ∈ Ua, we get that (1728− ĵ)−1 ∈W(Ua), and hence

27

4

(
1728 · 1

1728− ĵ
− 1

)
∈W(Ua).

Then, from our previous observations, we have that νa(Âi) ≥ −2pi and νa(B̂i) ≥ −3pi, for

i ≥ 1.

Now suppose that p ≡ 5 (mod 6). Then, by Theorem 11.1, we have νa(Ĵi) ≥ 0 for

i = 1, 2, 3 and νa(Ĵi) ≥ −((i − 3)pi − (i − 1)pi−2) for i ≥ 4. By Lemma 6.3, we have

that νa(ui) ≥ 0 for i = 1, 2, 3 and νa(ui) ≥ −((i − 3)pi − (i − 1)pi−2) for i ≥ 4. Now,

νa(1728 − j) = 0, and so, by Lemma 6.4 (with k = 4, α = 3 − 1/p2, β = 1 − 1/p2) and

Lemma 6.3, νa(wi) ≥ 0, for i = 1, 2, 3, and νa(wi) ≥ −((i− 3)pi − (i− 1)pi−2) for i ≥ 4.
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Hence, νa(Âi) ≥ −2pi for i = 1, 2, 3 and νa(Âi) ≥ −((i − 1)pi − (i − 1)pi−2) for i ≥ 4,

while νa(B̂i) ≥ −3pi for i = 1, 2, 3 and νa(B̂i) ≥ −(ipi − (i− 1)pi−2) for i ≥ 4.

If p ≡ 1 (mod 4), then, by Theorem 11.1, we have that Ĵi ∈ W(Ub), where Ub
def
=

Fp[a, b,H, 1/(∆Ha)]. Since we also have that j ∈ Ub, we have that 1728− ĵ ∈W(Ub).
Now, we have that u0 = 1728− j, and so νb(u0) = 2. Then, by Lemmas 6.3 and 6.5, we

get that νb(wi) ≥ −2(i+ 1)pi.

So, νb(Âi) ≥ −2ipi and νb(B̂i) ≥ −(2i− 1)pi for i ≥ 0.

Finally, if p ≡ 3 (mod 4), then by Theorem 11.1 and Lemma 6.3, we have νb(ui) ≥ 0

for i = 0, 1, 2 and νb(ui) ≥ −((i − 2)pi−1 − (i − 1)pi−2) for i ≥ 3. As above, we have that

νb(u0) = 2, and hence, by Lemmas 6.3 and 6.5, we have that νb(wi) ≥ −2(i+ 1)pi.

Thus, νb(Âi) ≥ −2ipi and νb(B̂i) ≥ −(2i− 1)pi for i ≥ 0. �

We can then apply Theorem 11.2 together with Theorem 10.1 to get bounds, although

still far from sharp, for Ai and Bi themselves:

Theorem 11.3. We have:

(1) If p ≡ 1 (mod 6), then:

(a) νa(Ai) ≥ −2pi for i ≥ 1;

(b) νa(Bi) ≥ −3pi for i ≥ 1.

(2) If p ≡ 5 (mod 6), then:

(a) νa(Ai) ≥ −2pi−ipi−1−(i−1)pi−2, for i = 1, 2, 3, and νa(Ai) ≥ −(i−1)pi−ipi−1

for i ≥ 4;

(b) νa(Bi) ≥ −3pi − ipi−1 − (i − 1)pi−2 for i = 1, 2, 3, and νa(Bi) ≥ −ipi − ipi−1

for i ≥ 4.

(3) For every p ≡ 1 (mod 4) we have:

(a) νb(Ai) ≥ −2ipi, for all i ≥ 1;

(b) νb(Bi) ≥ −(2i− 1)pi, for all i ≥ 1.

(4) For every p ≡ 3 (mod 4) we have:

(a) νb(Ai) ≥ −2ipi − ipi−1 − (i− 1)pi−2, for all i ≥ 1;

(b) νb(Bi) ≥ −(2i− 1)pi − ipi−1 − (i− 1)pi−2, for all i ≥ 1.

Proof. The proof follows immediately from Theorems 10.1 and 11.2 after observing that

Eq. (7.1) gives that

νa(h) =

0, if p ≡ 1 (mod 6);

1, if p ≡ 5 (mod 6);
and νb(h) =

0, if p ≡ 1 (mod 4);

1, if p ≡ 3 (mod 4).
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p = 5 p = 7

Actual Bound Actual Bound

νa(A1) −1 −11 1 −14

νa(A2) −35 −61 −35 −98

νa(A3) −325 −335 −539 −686

νa(A4) −1775 −2375 −4067 −4802

νa(B1) −6 −16 −6 −21

νa(B2) −60 −86 −84 −147

νa(B3) −450 −460 −882 −1029

νa(B4) −2400 −3000 −6468 −7203

νb(A1) −4 −10 −8 −15

νb(A2) −40 −100 −112 −211

νb(A3) −300 −750 −1176 −2219

νb(A4) −1600 −5000 −10976 −20727

νb(B1) 1 −5 −1 −8

νb(B2) −15 −75 −63 −162

νb(B3) −175 −625 −833 −1876

νb(B4) −975 −4375 −8575 −18326

Table 11.1. Actual valuations versus bounds.

�

As mentioned, these bounds are far from sharp. Table 11.1 illustrates this point.

12. Improved Bounds for A1 and B1

Due to some specific results from [Fin10] on J1, we can obtain improved bounds for the

valuations of A1 and B1.

We start by stating these results:

Theorem 12.1. Let p ≥ 5 be prime. Then,

ordX=0 (J1(X)) =

(2p+ 1)/3 if p ≡ 1 (mod 6),

(2p− 1)/3 if p ≡ 5 (mod 6),

and

ordX=1728 (J1(X)) =

1 if 1728p ≡ 1728 (mod p2),

0 otherwise.
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Moreover, if j = (j, J1(j)) and 1728− j = (u0, u1), then

νb(u1) ≥

p+ 1, if p ≡ 1 (mod 4),

p− 1, if p ≡ 3 (mod 4).

Proof. The first part follows from [Fin10, Theorem 3.2], which was originally proved by

Kaneko and Zagier in [KZ98], while the second part follows from Proposition 5.6 of the

same reference.

The last part is proved within the proof of [Fin10, Proposition 5.6]. �

Although of no real consequence for us here, we’ve checked using Sage that the only

primes p, with 5 ≤ p ≤ 436263290, for which 1728p ≡ 1728 (mod p2) are 2693 and 123653.

Also, note that if 1728 = (α0, α1) ∈W2(Fp), then α0 = 1728 (in Fp) and α1 = (1728 −
1728p)/p. So, α1 = 0 if and only if 1728p ≡ 1728 (mod p2).

We immediately get from Theorem 12.1:

Corollary 12.2. We have

νa(A1) =

1, if p ≡ 1 (mod 6),

−1, if p ≡ 5 (mod 6),
and νa(B1) =

−(p− 1), if p ≡ 1 (mod 6),

−(p+ 1), if p ≡ 5 (mod 6).

Proof. Since j = 1728 · 4a3/(4a3 + 27b2), we have that νa(J1(j)) = 3 · ordX=0 J1(X). Now,

let 1728 = (α0, α1) ∈W2(Fp), as above, and 1728− j = (u0, u1). Then

u1 = α1 − J1(j)−
p−1∑
i=1

1

p

(
p

i

)
αp−i0 (−j)i

(observing that 1
p

(
p
i

)
∈ Z). So, we have νa(u0) = 0, and νa(u1) = 0 if α1 6= 0 and νa(u1) ≥ 3

if α1 = 0.

Then, if (1728− j)−1 = (v0, v1), we have that v0 = 1/u0, and v1 = −u1/u
2p
0 . So,

νa(v0) = 0 and νa(v1) = νa(u1) ≥ 0.

Similarly, if we let 27/4 = (β0, β1) and 27/(4(1728 − j)) = (w0, w1), then we have

νa(w0) = νa(β0v0) = 0, and νa(w1) = νa(β
p
0v1 +vp0β1), and so νa(w1) = νa(v1) ≥ 0 if β1 = 0,

and νa(w1) ≥ 0 if β1 6= 0. Therefore, in either case, we have νa(w1) ≥ 0.

Hence, if 27j/(4(1728 − j)) = (z0, z1), then (z0, z1) = (jw0, j
pw1 + wp0J1(j)), and thus

νa(z0) = 3 and νa(z1) = νa(J1(j)), since, by Theorem 12.1, we have νa(j
pw1) ≥ 3p >

2p+ 1 ≥ νa(J1(j)).

Now, by Eq. (3.2), we have νa(A1) = νa(J1(j))− 2p, and by Eq. (3.3) we have νa(B1) =

νa(J1(j))− 3p. The result then follows from Theorem 12.1. �

We proceed in a similar manner for νb.
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Corollary 12.3. We have

νb(A1) ≥

−p+ 1, if p ≡ 1 (mod 4),

−(p+ 1), if p ≡ 3 (mod 4),
and νb(B1) ≥

1, if p ≡ 1 (mod 4),

−1, if p ≡ 3 (mod 4).

Proof. If 1728− j = (u0, u1), then by Theorem 12.1, we have that νb(u0) = 2 and νb(u1) ≥
p± 1 with the positive sign if p ≡ 1 (mod 4) and negative sign if p ≡ 3 (mod 4).

Then, if (1728− j)−1 = (v0, v1), we have that v0 = 1/u0, and v1 = −u1/u
2p
0 . So,

νb(v0) = −2 and νb(v1) ≥ −3p± 1.

Similarly, the formulas for the Witt product give that if 27/(4(1728 − j)) = (w0, w1),

then νb(w0) = −2, νb(w1) ≥ −3p± 1.

Now, observe that from the second part of Theorem 12.1, we have that ordX=1728 J1(X) ∈
{0, 1}, and so νb(J1(j)) ∈ {0, 2}. Therefore

νb(J1(j)wp0 + w1j
p) ≥ −3p± 1,

i.e., if 27j/(4(1728− j)) = (z0, z1), then νb(z0) = −2 and νb(z1) ≥ −3p± 1.

Thus, by Eq. (3.2), we have νb(A1) ≥ −p± 1, and by Eq. (3.3) we have νb(B1) ≥ ±1. �

Acknowledgments. The computations mentioned were done with MAGMA.
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