1) Suppose that R is a relation from A to B and S and is a relation from B to C. Prove that if $\operatorname{Ran}(R) \subseteq \operatorname{Dom}(S)$, then $\operatorname{Dom}(R) \subseteq \operatorname{Dom}(S \circ R)$.
[Note: This was (part of) a HW problem.]
Proof. Let $a \in \operatorname{Dom}(R)$. Then, there is $b \in B$ such that $(a, b) \in R$. This also means that $b \in \operatorname{Ran}(R)$, and since $\operatorname{Ran}(R) \subseteq \operatorname{Dom}(S)$, we have that $b \in \operatorname{Dom}(S)$. Hence, there is $c \in C$ such that $(b, c) \in S$. Then, since $(a, b) \in R$ and $(b, c) \in S$, we have that $(a, c) \in S \circ R$, and thus $a \in \operatorname{Dom}(S \circ R)$. Hence, $\operatorname{Dom}(R) \subseteq \operatorname{Dom}(S \circ R)$.
2) Let R_{1} and R_{2} be relations on a set A.
(a) Prove that if R_{1} and R_{2} are both reflexive, then so is $R_{1} \cup R_{2}$.

Proof. Suppose that R_{1} and R_{2} are both reflexive and let $a \in A$. Then, since R_{1} is reflexive, we have that $(a, a) \in R_{1}$, which means that $(a, a) \in R_{1} \cup R_{2}$.
(b) Prove that if R_{1} and R_{2} are both symmetric, then so is $R_{1} \cup R_{2}$.

Proof. Suppose that R_{1} and R_{2} are both symmetric and let $(a, b) \in R_{1} \cup R_{2}$. Then either $(a, b) \in R_{1}$ or $(a, b) \in R_{2}$. In the former case, we have that $(b, a) \in R_{1}$, since R_{1} is symmetric, and in the latter case we have that $(b, a) \in R_{2}$, since R_{2} is symmetric. In either case we have that $(b, a) \in R_{1} \cup R_{2}$.
3) Let R be a partial order on $A, B_{1} \subseteq A, B_{2} \subseteq A, x_{1}$ a least upper bound of B_{1}, and x_{2} an upper bound of B_{2}. Prove that if $B_{1} \subseteq B_{2}$, then $x_{1} R x_{2}$.
[Note: This was a HW problem.]
Proof. We prove that x_{2} is an upper bound of B_{1} : let $b \in B_{1}$. Since $B_{1} \subseteq B_{2}$, we have that $b \in B_{2}$. Since x_{2} is an upper bound of B_{2}, we have that $b R x_{2}$. Since $b \in B_{1}$ was arbitrary, we have that x_{2} is an upper bound of B_{1}.
Now, since x_{1} is the least upper bound of B_{1}, and x_{2} is an upper bound of B_{1}, we have that $x_{1} R x_{2}$.
4) Let m be a [fixed] positive integer and consider the relation on \mathbb{Z} given by:

$$
C_{m}=\{(a, b) \in \mathbb{Z} \times \mathbb{Z} \mid m \text { divides } b-a\}
$$

Prove that C_{m} is an equivalence relation.
[Remember that m divides c iff $c=m \cdot k$ for some k in \mathbb{Z}.]
Proof. [Reflexive] Let $a \in \mathbb{Z}$. Then $a-a=0=0 \cdot m$. Since $0 \in \mathbb{Z}$, we have that m divides $a-a$, and so $(a, a) \in C_{m}$.
[Symmetric] Suppose that $(a, b) \in C_{m}$. Then, $b-a=k \cdot m$ for some $k \in \mathbb{Z}$. Thus, $a-b=-(b-a)=-(k \cdot m)=(-k) \cdot m$. Since $-k \in \mathbb{Z}$, we have that m divides $a-b$, and so $(b, a) \in C_{m}$.
[Transitive] Suppose that $(a, b),(b, c) \in C_{m}$. Then $b-a=k \cdot m$ and $c-b=l \cdot m$ for some $k, l \in \mathbb{Z}$. Then,

$$
c-a=(c-b)+(b-a)=l \cdot m+k \cdot m=(l+k) \cdot m .
$$

Since $k+l \in \mathbb{Z}$, we have that m divides $c-a$, and so $(a, c) \in C_{m}$.
5) Let $f: A \rightarrow B, C \subseteq A$, and $g=f \cap(C \times B)$. Prove that $g: C \rightarrow B$ (i.e., the relation g is a function from C to B) and for all $c \in C$ we have that $g(c)=f(c)$.

Proof. Let $c \in C$. Then, since $C \subseteq A$, we have that $c \in A$. Then $(c, f(c)) \in f$. But, since $c \in C$ and $f(c) \in B$, we also have that $(c, f(c)) \in C \times B$. So, $(c, f(c)) \in f \cap(C \times B)=g$.

Suppose now that $(c, b) \in g$. Then, since $g \subseteq f$, we have $(c, b) \in f$, so $b=f(c)$. So, $(c, f(c))$ is the unique element of g with first coordinate c, and hence $g: C \rightarrow B$ and $g(c)=f(c)$.

