Midterm 1

Math 300 – Fall 2020

September 30th, 2020

- 1) Analyze the logical form of the following statements:
 - (a) Anyone who has bought a Rolls Royce must have a rich uncle. (Use the statement B(x) for "x bought a Rolls Royce", U(x, y) for "x is y's uncle", and R(x) for "x is rich".)

Solution.

$$\forall x \left[B(x) \to \left(\exists y (U(y, x)) \land R(y) \right) \right].$$

(b) "If anyone in the dorm has the measles, then everyone who has a friend in the dorm will have to be quarantined." (Use M(x) for "x has measles", F(x, y) for "x and y are friends", Q(x) for "x will have to be quarantined", and D for the set of everyone living in the dorm. Your quantifiers *cannot* be bound! If can only do it with bound quantifiers and you bound them correctly, you do get some partial credit.)

Solution.

$$(\exists x (x \in D \land M(x))) \to [\forall y ([\exists z (z \in D \land F(y, z))] \to Q(y))].$$

2) Negate the following statement and restate it as a positive statement.

$$\forall e \in \mathbb{R}_{>0} \left[\exists d \in \mathbb{R}_{>0} \left(\forall x (x < d \to x^2 < e) \right) \right].$$

In this problem you *can* have bound quantifiers.

Solution.

$$\neg \left[\forall e \in \mathbb{R}_{>0} \left[\exists d \in \mathbb{R}_{>0} \left(\forall x (x < d \to x^2 < e) \right) \right] \right] \sim \exists e \in \mathbb{R}_{>0} \neg \left[\exists d \in \mathbb{R}_{>0} \left(\forall x (x < d \to x^2 < e) \right) \right] \sim \exists e \in \mathbb{R}_{>0} \left[\forall d \in \mathbb{R}_{>0} \neg \left(\forall x (x < d \to x^2 < e) \right) \right] \sim \exists e \in \mathbb{R}_{>0} \left[\forall d \in \mathbb{R}_{>0} \left(\exists x \neg (x < d \to x^2 < e) \right) \right] \sim \exists e \in \mathbb{R}_{>0} \left[\forall d \in \mathbb{R}_{>0} \left(\exists x (x < d \to x^2 < e) \right) \right] \sim \exists e \in \mathbb{R}_{>0} \left[\forall d \in \mathbb{R}_{>0} \left(\exists x (x < d \land x^2 \ge e) \right) \right].$$

_		_	
Г		٦	
L		1	
L		_	

3) Verify the equality

$$\bigcap_{i \in I} (A_i \setminus B_i) = \left(\bigcap_{i \in I} A_i\right) \setminus \left(\bigcup_{i \in I} B_i\right)$$

by showing (with logical symbols) that

$$x \in \bigcap_{i \in I} (A_i \setminus B_i) \sim x \in \left(\bigcap_{i \in I} A_i\right) \setminus \left(\bigcup_{i \in I} B_i\right).$$

[Note: This was a HW problem.]

Solution.

$$x \in \bigcap_{i \in I} (A_i \setminus B_i) \sim \forall i \in I (x \in A_i \setminus B_i)$$

$$\sim \forall i \in I (x \in A_i \land x \notin B_i)$$

$$\sim [\forall i \in I (x \in A_i)] \land [\forall i \in I \neg (x \in B_i)]$$

$$\sim [\forall i \in I (x \in A_i)] \land \neg [\exists i \in I (x \in B_i)]$$

$$\sim [x \in \bigcap_{i \in I} A_i] \land \neg [x \in \bigcup_{i \in I} B_i]$$

$$\sim x \in \bigcap_{i \in I} A_i \setminus \bigcup_{i \in I} B_i.$$

4) Suppose that $A \setminus B \subseteq C \cap D$ and $x \in A$. Prove that if $x \notin D$, then $x \in B$.

We use the contrapositive. Suppose that $x \notin B$. Since $x \in A$, we have that $x \in A \setminus B$. But since $A \setminus B \subseteq C \cap D$, this means that $x \in C \cap D$. In particular, we have that $x \in D$. Thus, if $x \notin B$, then $x \in D$, and therefore, if $x \notin D$, then $x \in B$.

5) Suppose that y + x = 2y - x, and x and y are not both zero. Prove that $y \neq 0$. [Note: This was a HW problem.]

Proof. Suppose that y = 0. [We need to derive a contradiction.] Then, we have $0 + x = 2 \cdot 0 - x$, which gives 2x = 0, or x = 0. Thus, we have that x = 0 and y = 0, which is a contradiction since we assumed that not both x and y were zero.