Midterm 1

Math 300 - Fall 2020

September 30th, 2020

1) Analyze the logical form of the following statements:
(a) Anyone who has bought a Rolls Royce must have a rich uncle. (Use the statement $B(x)$ for " x bought a Rolls Royce", $U(x, y)$ for " x is y 's uncle", and $R(x)$ for " x is rich".)

Solution.

$$
\forall x[B(x) \rightarrow(\exists y(U(y, x)) \wedge R(y))]
$$

(b) "If anyone in the dorm has the measles, then everyone who has a friend in the dorm will have to be quarantined." (Use $M(x)$ for " x has measles", $F(x, y)$ for " x and y are friends", $Q(x)$ for " x will have to be quarantined", and D for the set of everyone living in the dorm. Your quantifiers cannot be bound! If can only do it with bound quantifiers and you bound them correctly, you do get some partial credit.)

Solution.

$$
(\exists x(x \in D \wedge M(x))) \rightarrow[\forall y([\exists z(z \in D \wedge F(y, z))] \rightarrow Q(y))] .
$$

2) Negate the following statement and restate it as a positive statement.

$$
\forall e \in \mathbb{R}_{>0}\left[\exists d \in \mathbb{R}_{>0}\left(\forall x\left(x<d \rightarrow x^{2}<e\right)\right)\right]
$$

In this problem you can have bound quantifiers.

Solution.

$$
\begin{aligned}
\neg[\forall e & \left.\in \mathbb{R}_{>0}\left[\exists d \in \mathbb{R}_{>0}\left(\forall x\left(x<d \rightarrow x^{2}<e\right)\right)\right]\right] \\
& \sim \exists e \in \mathbb{R}_{>0} \neg\left[\exists d \in \mathbb{R}_{>0}\left(\forall x\left(x<d \rightarrow x^{2}<e\right)\right)\right] \\
& \sim \exists e \in \mathbb{R}_{>0}\left[\forall d \in \mathbb{R}_{>0} \neg\left(\forall x\left(x<d \rightarrow x^{2}<e\right)\right)\right] \\
& \sim \exists e \in \mathbb{R}_{>0}\left[\forall d \in \mathbb{R}_{>0}\left(\exists x \neg\left(x<d \rightarrow x^{2}<e\right)\right)\right] \\
& \sim \exists e \in \mathbb{R}_{>0}\left[\forall d \in \mathbb{R}_{>0}\left(\exists x\left(x<d \wedge x^{2} \geq e\right)\right)\right] .
\end{aligned}
$$

3) Verify the equality

$$
\bigcap_{i \in I}\left(A_{i} \backslash B_{i}\right)=\left(\bigcap_{i \in I} A_{i}\right) \backslash\left(\bigcup_{i \in I} B_{i}\right)
$$

by showing (with logical symbols) that

$$
x \in \bigcap_{i \in I}\left(A_{i} \backslash B_{i}\right) \sim x \in\left(\bigcap_{i \in I} A_{i}\right) \backslash\left(\bigcup_{i \in I} B_{i}\right) .
$$

[Note: This was a HW problem.]
Solution.

$$
\begin{aligned}
x \in \bigcap_{i \in I}\left(A_{i} \backslash B_{i}\right) & \sim \forall i \in I\left(x \in A_{i} \backslash B_{i}\right) \\
& \sim \forall i \in I\left(x \in A_{i} \wedge x \notin B_{i}\right) \\
& \sim\left[\forall i \in I\left(x \in A_{i}\right)\right] \wedge\left[\forall i \in I \neg\left(x \in B_{i}\right)\right] \\
& \sim\left[\forall i \in I\left(x \in A_{i}\right)\right] \wedge \neg\left[\exists i \in I\left(x \in B_{i}\right)\right] \\
& \sim\left[x \in \bigcap_{i \in I} A_{i}\right] \wedge \neg\left[x \in \bigcup_{i \in I} B_{i}\right] \\
& \sim x \in \bigcap_{i \in I} A_{i} \backslash \bigcup_{i \in I} B_{i} .
\end{aligned}
$$

4) Suppose that $A \backslash B \subseteq C \cap D$ and $x \in A$. Prove that if $x \notin D$, then $x \in B$.

We use the contrapositive. Suppose that $x \notin B$. Since $x \in A$, we have that $x \in A \backslash B$. But since $A \backslash B \subseteq C \cap D$, this means that $x \in C \cap D$. In particular, we have that $x \in D$. Thus, if $x \notin B$, then $x \in D$, and therefore, if $x \notin D$, then $x \in B$.
5) Suppose that $y+x=2 y-x$, and x and y are not both zero. Prove that $y \neq 0$.
[Note: This was a HW problem.]
Proof. Suppose that $y=0$. [We need to derive a contradiction.] Then, we have $0+x=$ $2 \cdot 0-x$, which gives $2 x=0$, or $x=0$. Thus, we have that $x=0$ and $y=0$, which is a contradiction since we assumed that not both x and y were zero.

