1) [10 points] Find all integers x such that

$$
\begin{aligned}
& x \equiv 2 \quad(\bmod 9) \\
& x \equiv 4 \quad(\bmod 11)
\end{aligned}
$$

[Of course, x must satisfy both congruences.]
Solution. The first congruence tell us that $x=9 k+2$ for some $k \in \mathbb{Z}$. So, we get $9 k \equiv 2$ $(\bmod 11)$. As $5 \cdot 9-4 \cdot 11=1$, we can multiply the congruence by 5 and get $k \equiv 10(\bmod 11)$. So, $k=10+11 l$ and hence $x=92+99 l$ for $l \in \mathbb{Z}$.
2) [10 points] Let $a, b \in \mathbb{Z} \backslash\{0\}$ and $d=(a, b)$. Prove that $(a / d, b / d)=1$.

Proof. By Bezout's Theorem, there are $r, s \in \mathbb{Z}$ such that

$$
r a+s b=d
$$

Dividing by d [and noticing $a / d, b / d \in \mathbb{Z}$], we get

$$
r \frac{a}{d}+s \frac{b}{d}=1 .
$$

Hence, by Problem 1.56 from the book [which I did in class], we have $(a / d, b / d)=1$.
3) [10 points] Prove that if $x, y, z \in \mathbb{Z}$, none divisible by 3 , then $x^{2}+y^{2} \neq z^{2}$.

Proof. If $a \in \mathbb{Z}$ is not divisible by 3 , then $a \equiv \pm 1(\bmod 3)$. So, $a^{2} \equiv 1(\bmod 1)$. Thus, $x^{2} \equiv y^{2} \equiv z^{2} \equiv 1$. If $x^{2}+y^{2}=z^{2}$, then $x^{2}+y^{2} \equiv z^{2}(\bmod 3)$, but that would mean $1+1=2 \equiv 1(\bmod 3)$, a contradiction.
4) [10 points] Let R be a domain. Prove that if $f \in U(R[x])$, then $f \in U(R)$ [i.e., f is a constant polynomial and a unit of R.
[Note: This was proved in class.]
Proof. Let $f \in U(R[x])$. Then, there is $g \in R[x]$ such that $f g=1$. Thus $\operatorname{deg}(f g)=$ $\operatorname{deg}(1)=0$. Since R is a domain, we have that $\operatorname{deg}(f g)=\operatorname{deg}(f)+\operatorname{deg}(g)=0$. So, $\operatorname{deg}(f)=\operatorname{deg}(g)=0$ and hence $f, g \in R \backslash\{0\}$. Since $f g=1$, we have that $f, g \in U(R)$.
5) The statements below are false. Give a counter example to each one.
(a) [3 points] If F is a field, and $a \in F$, then $a=-a$ only if $a=0$.

Solution. In \mathbb{F}_{2} we have that $-1=1$, but $1 \neq 0$.
(b) [3 points] If R is a ring and $f \in R[x]$, then $\operatorname{deg}\left(f^{2}\right)=2 \operatorname{deg}(f)$.

Solution. In $\mathbb{I}_{4}[x]$, we have that if $f=2 x$, then $\operatorname{deg}(f)=1$. But $f^{2}=4 x^{2}=0$, so $\operatorname{deg}\left(f^{2}\right)=-\infty \neq 2$.
(c) [4 points] If R is a ring and $f \in R[x]$ with $\operatorname{deg}(f)=n$, then f has at most n roots in R.

Solution. In $\mathbb{I}_{4}[x]$, we have that if $f=2 x$, then $\operatorname{deg}(f)=1$ and $f(0)=f(2)=0$, so f has 2 roots in $R=\mathbb{I}_{4}$.
6) Determine if the polynomials below are irreducible or not in the corresponding polynomial ring. Justify each answer!
(a) [3 points] $f=x^{5}-4 x^{4}+10 x^{3}+8 x^{2}-2 x+6$ in $\mathbb{Q}[x]$.

Solution. Irreducible by the Eisenstein's Criterion with $p=2$.
(b) [4 points] $f=6666667 x^{3}-33333334 x+99999991$ in $\mathbb{Q}[x]$.

Solution. Reducing modulo 3 we get $\bar{f}=x^{3}-x+1 \in \mathbb{F}_{3}[x]$. Now $\bar{f}(0)=\bar{f}(1)=$ $\bar{f}(2)=1 \neq 0$. So, \bar{f} has no roots in \mathbb{F}_{3} and since it is of degree 3 , it is irreducible in $\mathbb{F}_{3}[x]$. So, f must be irreducible in $\mathbb{Q}[x]$.
(c) $[3$ points $] f=3 x^{4}-6 x^{3}+9 x-1$ in $\mathbb{Q}[x]$.

Solution. Irreducible by the Reversed Eisenstein's Criterion with $p=3$.
7) Let $\sigma, \tau \in S_{9}$ be given by

$$
\sigma=\left(\begin{array}{lllllllll}
1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 \\
5 & 3 & 9 & 2 & 1 & 4 & 8 & 7 & 6
\end{array}\right) \quad \text { and } \quad \tau=(1378)(2459) .
$$

(a) [4 points] Write the complete factorization of σ into disjoint cycles.

Solution. $\sigma=(15)(23964)(78)$.
(b) [3 points] Compute $\tau \sigma$. [Your answer can be in any form.]

Solution. $\tau \sigma=(1965327)(4)(8)$.
(c) [3 points] Write τ as a product of transpositions.

Solution. $\tau=(18)(17)(13)(29)(25)(24)$
(d) [4 points] Compute $\sigma \tau \sigma^{-1}$. [Your answer can be in any form.]

Solution. $\sigma \tau \sigma^{-1}=(5987)(3216)$.
(e) [3 points] Compute $\operatorname{sign}(\tau)$.

Solution. $\operatorname{sign}(\tau)=(-1)^{6}=1$.
(f) [3 points] Compute $|\tau|$.

Solution. $|\tau|=\operatorname{lcm}(4,4)=4$.
8) [10 points] Let G be a group, H and K finite subgroups of G such that $(|H|,|K|)=1$. Prove that $H \cap K=\{1\}$.
[Note: This was a HW problem.]
Proof. Let $x \in H \cap K$. Since $x \in H$, we have that $|x|||H|$ by Corollary 2.85. Similarly, since $x \in K$, we have that $|x|||K|$. Since $| x \mid$ is a common divisor of $|H|$ and $|K|$, which are relatively prime, we must have $|x|=1$, i.e., $x=1$. Since x was arbitrary, 1 is the only element in $H \cap K$. [Note that clearly $1 \in H \cap K$, as $1 \in H$ and $1 \in K$, since H and K are subgroups of G.]
9) [10 points] Let G be a group and suppose that $(a b)^{3}=1$ for some $a, b \in G$. Prove that $(b a)^{3}=1$.
[Note: There is nothing special about the exponent 3. After you do this, you should see how to do it for any exponent.]

Proof. We have that

$$
(a b)(a b)(a b)=1
$$

Or,

$$
a(b a)(b a) b=1 .
$$

Multiply on the left by b, we get:

$$
(b a)(b a)(b a) b=b \cdot 1=b .
$$

Now, multiply on the right by b^{-1} :

$$
(b a)^{3}=(b a)(b a)(b a)=1 .
$$

