
1) [20 points] If

f = 2 · (x + 2)3 · (x2 + 2)2 · (x2 + 3x + 3) · (x3 + x + 1)5,

g = 3 · (x + 1)5 · (x2 + 2) · (x2 + 3x + 3)3,

are the factorizations of f an g into monic irreducible polynomials in F5[x], then give the

factorization of their GCD and LCM.

Solution. We have:

(f, g) = (x2 + 2)(x2 + 3x + 3),

[f, g] = (x + 1)5(x + 2)3(x2 + 2)2(x2 + 3x + 3)3(x3 + x + 1)5.

2) [20 points] Let f(x) = x4 + x2 + x+ 1 and g(x) = x3 + x2 + x+ 1, both in F2[x]. Express

their GCD as a linear combination of themselves.

[Hint: You should find that the GCD is x + 1.]

Solution. We have:

x4 + x2 + x + 1 = (x3 + x2 + x + 1)(x + 1) + (x2 + x)

x3 + x2 + x + 1 = (x2 + x)x + (x + 1)

x2 + x = (x + 1)x + 0.

So, the GCD is x + 1. Then [remembering that in F2 we have −1 = 1]:

x + 1 = (x3 + x2 + x + 1) + (x2 + x)x

= (x3 + x2 + x + 1) + [(x4 + x2 + x + 1) + (x3 + x2 + x + 1)(x + 1)]x

= (x4 + x2 + x + 1)x + (x3 + x2 + x + 1)(x2 + x + 1).
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3) [20 points] Let F be a field and f, g, h ∈ F [x] with f and g relatively prime. Prove that

if f | h and g | h, then (f · g) | h.

[Hint: If you could prove it in Z instead of F [x], the same proof should work here. Also,

this was a HW problem.]

Proof. By Bezout’s Theorem [for polynomials], there are r, s ∈ F [x] such that

rf + sg = 1.

So, multiplying by h, we get

rfh + sgh = h.

Now, since f | h and g | h, we have that there are f1, g1 ∈ F [x] such that h = f1f = g1g.

Then, we get

h = rfh + sgh = rfg1g + sgf1f = fg(rg1 + sf1).

Since rg1 + sf1 ∈ F [x], we have that fg | h.

4) [40 points] Decide if the polynomials below are irreducible or not in the corresponding

polynomial ring. [Justify!]

(a) f = x2 − 3x + 5 in R[x].

Solution. We have that (−3)2−4 ·1 ·5 = −11, so it has no real roots. Since the degree

is 2, we have that f is irreducible.

(b) f = x5 − x + 2 in C[x].

Solution. Since it does not have degree one, by the Fundamental Theorem of Algebra,

we have that f is reducible.
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(c) f =
2

3
x3 + 4x2 − 6x +

4

3
in Q[x].

Solution. We have f =
2

3
(x3 + 6x2 − 9x + 2). So, let f ] = x3 + 6x2 − 9x + 2 and then

f is reducible iff f ] is. Now, since f ] has degree 3 is reducible iff it has a root. The

possible rational roots are ±1 and ± − 2. Now, one can check that f(1) = 0, so f ] is

reducible, and hence also f is reducible.

(d) f = 3x5 − 9x4 + 6x2 + 12x− 3335 in Q[x].

Solution. We apply the “reversed Eisenstein Criterion” from Problem 3.91 from the

textbook [and HW] with p = 3. Since p - 3335 [as 3335 ≡ 2 (mod 3)], but divides all

coefficients, while 32 - 3. So, it’s irreducible.

(e) f = x + 1000 in F2017[x].

Solution. It has degree one, so it is irreducible.

(f) f = 1000x3 − 999x2 − 1001x + 20000 in Q[x].

Solution. Reducing modulo 7, we get f = 6x3 + 2x2 + 1. Now

f(0) = 1 6= 0,

f(1) = 2 6= 0,

f(2) = 1 6= 0,

f(3) = 6 6= 0,

f(4) = 4 6= 0,

f(5) = 3 6= 0,

f(6) = 4 6= 0,

and hence f has no roots. Since it has degree 3, it is irreducible. Hence, we have that

f is irreducible.

[Note: You could use 11 instead of 7. The benefit is that it is easier to reduce modulo

11 [using Problem 1.80], but you have more possible roots to check.]
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(g) f = 3x7 − 4x6 + 18x5 + 6x4 + 2x3 − 34x2 + 100x− 30 in Q[x].

Solution. It is irreducible by the Eisesntein Criterion for p = 2.

(h) f = 2x9 + 5x7 + 3x5 + x4 + 6x3 + 4x in F7[x].

Solution. Clearly x is a factor:

f = x · (2x8 + 5x6 + 3x4 + x3 + 6x2 + 4).

So, f is reducible.
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