1) [20 points] If u is a unit in a commutative ring, prove that it's inverse is unique: if $u a=1$ and $u b=1$, then $a=b$. Justify every step with an axiom! (Don't skip steps!) [The axioms are listed in the last page.]

Proof. We have:

$$
\begin{array}{rlrl}
u a=1 & \Longrightarrow & & \\
& \Longrightarrow u a) b=1 \cdot b & & {[\text { multiply by } b]} \\
& \Longrightarrow u(a b)=b & & {[\text { axioms } 6 \text { and } 7]} \\
& \Longrightarrow(b a)=b & & {[\text { axiom } 5]} \\
& \Longrightarrow 1 \cdot a=b & & {[\text { axioms } 6]} \\
& \Longrightarrow a=b & & {[\text { by hypothesis }]} \\
& & {[\text { axioms } 7] .}
\end{array}
$$

2) Prove or disprove [i.e., if the statement is true, prove it, if not, show why the statement is false].
(a) [15 points] $R=\{f \in \mathbb{Z}[x] \mid f$ is monic $\}$ is a domain.

Solution. It's not a domain, or even a ring, as it is not closed under addition: $x \in R$ [as it's monic], but $x+x=2 x$ is not [as it is not monic].
[Alternatively, not that R does not have 0 in it, since 0 is not monic. But note that 1 is a monic polynomial!]
(b) [15 points] $R=\left\{a+x^{2} f \mid a \in \mathbb{Z}\right.$ and $\left.f \in \mathbb{Z}[x]\right\}$ is a domain.

Proof. It suffices to prove that it is a subring of $\mathbb{Z}[x]$. Since \mathbb{Z} is a domain, we have that $\mathbb{Z}[x]$ is a domain, and since subrings of domains are domains, we get that a subring of $\mathbb{Z}[x]$ is also a domain.

We have that $1 \in R$ as $1=1+x^{2} \cdot 0$ [with $1 \in \mathbb{Z}$ and $\left.0 \in \mathbb{Z}[x]\right]$.
Let now $f, g \in R$. Then, $f=a+x^{2} f_{1}$ and $g=b+x^{2} g_{1}$ for some $a, b \in \mathbb{Z}$ and $f_{1}, g_{1} \in \mathbb{Z}[x]$. Then $f-g=(a-b)+x^{2}\left(f_{1}-g_{1}\right)$. Since $a-b \in \mathbb{Z}$ and $f_{1}-g_{1} \in \mathbb{Z}[x]$, we have that $f-g \in R$.

Also, $f \cdot g=\left(a+x^{2} f_{1}\right)\left(b+x^{2} g_{1}\right)=a b+a x^{2} g_{1}+b x^{2} f_{1}+x^{4} f_{1} g_{1}=a b+x^{2}\left(a g_{1}+b f_{1}+x^{2} f_{1} g_{1}\right)$.
Since $a b \in \mathbb{Z}$ and $\left(a g_{1}+b f_{1}+x^{2} f_{1} g_{1}\right) \in \mathbb{Z}[x]$, we have that $f \cdot g \in R$.
3) Examples of rings (no justifications needed):
(a) [15 points] Give an example of a infinite, non-commutative ring R such that $2 \cdot a=0$ for all $a \in R$.

Solution. $M_{2}\left(\mathbb{F}_{2}(x)\right)\left[2 \times 2\right.$ matrices with entries in $\left.\mathbb{F}_{2}(x)\right]$.
(b) [15 points] Give an example of a ring R that is not a field, but contains an infinite field and such that $25 \cdot a=0$ for all $a \in R$.

Solution. $\mathbb{F}_{5}(x)[y]\left[\right.$ polynomials in y with coefficients in $\left.\mathbb{F}_{5}(x)\right]$.
4) [20 points] Prove that if $f=x^{p}-x \in \mathbb{F}_{p}[x]$, then $f(a)=0$ for all $a \in \mathbb{F}_{p}$. [Hint: $f=x\left(x^{p-1}-1\right)$. Also, of course, you need facts about congruences modulo p.]

Proof. By Fermat's Little Theorem, for all $a \in \mathbb{Z}$ we have that $a^{p} \equiv a(\bmod p)$. So, for all $a \in \mathbb{F}_{p}$, we have that $f(a)=a^{p}-a=a-a=0$.

Commutative Ring Axioms: A [non-empty] set with two operations, + and \cdot, is a commutative ring if:

0 . For all $a, b \in R$ we have that $a+b \in R$ and $a \cdot b \in R$.

1. For all $a, b \in R$ we have that $a+b=b+a$.
2. For all $a, b, c \in R$ we have that $(a+b)+c=a+(b+c)$.
3. There exists $0 \in R$ such that for all $a \in R$ we have $a+0=a$.
4. For all $a \in R$ there exists $-a \in R$ such that $a+(-a)=0$.
5. For all $a, b \in R$ we have that $a \cdot b=b \cdot a$.
6. For all $a, b, c \in R$ we have that $(a \cdot b) \cdot c=a \cdot(b \cdot c)$
7. There is $1 \in R$ such that for all $a \in R$ we have that $1 \cdot a=a$
8. For all $a, b, c \in R$ we have that $a \cdot(b+c)=a \cdot b+a \cdot c$
