1) [20 points] Find all integers x such that

$$
\begin{array}{ll}
5 x \equiv 3 & (\bmod 6) \\
3 x \equiv 1 & (\bmod 10)
\end{array}
$$

[If there is no such integer, explain how you could tell.]
Solution. Since $5 \equiv-1(\bmod 6)$, the first equation gives us that $x \equiv-3 \equiv 3(\bmod 6)$ So, $x=6 k+3$ for some $k \in \mathbb{Z}$.
Substituting in the second equation, we get $3(6 k+3) \equiv 1(\bmod 10)$, i.e., $18 k \equiv-8(\bmod 10)$, or $8 k \equiv 2(\bmod 10)$. Since $(8,10)=2 \mid 2$, we get $4 k \equiv 1(\bmod 5)$. Since $4 \equiv-1(\bmod 5)$, we have $k \equiv-1 \equiv 4(\bmod 5)$, i.e., $k=5 l+4$ for $l \in \mathbb{Z}$.
So, [all] the solutions are $x=6(5 l+4)+3=30 l+27$, for $l \in \mathbb{Z}$.
2) [20 points] Let

$$
n=604239 \cdot(450027)^{6695}+7082819
$$

Find its residue modulo 11 [i.e., the remainder when n is divided by 11].
[Hint: Remember that if the [decimal] digits are given by $a=d_{k} d_{k-1} \cdots d_{0}$, then $a \equiv$ $\left.d_{0}-d_{1}+d_{2}-d_{3}+\cdots+(-1)^{k-1} d_{k}+(-1)^{k} d_{k}(\bmod 11).\right]$

Solution. We have:

$$
\begin{aligned}
604239 & \equiv 9-3+2-4+0-6=-2 \quad(\bmod 11) \\
450027 & \equiv 7-2+0-0+5-4=6 \quad(\bmod 11) \\
7082819 & \equiv 9-1+8-2+8-0+7=29 \equiv 9-2=7 \quad(\bmod 11)
\end{aligned}
$$

So,

$$
n \equiv-2 \cdot 6^{6695}+7 \quad(\bmod 11)
$$

Also:

$$
\begin{aligned}
6695 & =11 \cdot 608+7 \\
608 & =11 \cdot 55+3 \\
55 & =11 \cdot 5+0 \\
5 & =11 \cdot 0+5
\end{aligned}
$$

and hence $6695=7+3 \cdot 11+0 \cdot 11^{2}+5 \cdot 11^{3}$. So:

$$
\begin{aligned}
6^{6695} \equiv 6^{7+3+0+5}=6^{15}=6^{4+1 \cdot 11} & \equiv 6^{1+4} \\
& =6^{5}=6^{2} \cdot 6^{2} \cdot 6 \equiv 36 \cdot 36 \cdot 6 \equiv 3 \cdot 3 \cdot 6 \equiv 54 \equiv-1 \quad(\bmod 11)
\end{aligned}
$$

Thus,

$$
n \equiv-2 \cdot(-1)+7=9 \quad(\bmod 11)
$$

3) [20 points] Prove that $x^{2}+y^{2}=3,000,000,003$ has no solution with $x, y, z \in \mathbb{Z}$.

Proof. We have that x^{2} and y^{2} are either 0 or 1 modulo 4 , so the only possibilities for $x^{2}+y^{2}$ modulo 4 are 0,1 and 2 . But $3,000,000,003 \equiv 3(\bmod 4)$. So, there are no such $x, y \in \mathbb{Z}$.
4) Congruences modulo 7 :
(a) $[10$ points $]$ Prove that $b \equiv 0(\bmod 7)$ if and only if $-2 b \equiv 0(\bmod 7)$. [Remember that there are two parts to this: the "if" and the "only if".]

Proof. If $b \equiv 0(\bmod 7)$, then $-2 b \equiv-2 \cdot 0=0(\bmod 7)$.
Conversely, if $-2 b \equiv 0(\bmod 7)$, then $-6 b \equiv 3 \cdot 0=0(\bmod 7)$. Since $-6 \equiv 1(\bmod 7)$, this means $b \equiv 0(\bmod 7)$.
[One could also easily do this using unique factorization.]
(b) [10 points] Prove that if the decimal digits of a are given by $a=d_{k} d_{k-1} \cdots d_{1} d_{0}$, then a is divisible by 7 if and only if $d_{k} d_{k-1} \cdots d_{1}-2 \cdot d_{0}$ is divisible by 7 . [For example, this means that 1234 is divisible by 7 if and only if $123-2 \cdot 4=115$ is divisible by 7 .]
[Hint: You can use the previous part, even if you could not do it.]

Proof. We have that

$$
\begin{aligned}
& 7 \mid a \text { iff } d_{k} d_{k-1} \cdots d_{1} d_{0} \equiv 0 \quad(\bmod 7) \\
& \quad \text { iff } d_{k} d_{k-1} \cdots d_{1} \cdot 10+d_{0} \equiv 0 \quad(\bmod 7) \\
& \quad \text { iff } d_{k} d_{k-1} \cdots d_{1} \cdot 3+d_{0} \equiv 0 \quad(\bmod 7) \\
& \quad \text { iff }[\text { using part }(\mathrm{a})] d_{k} d_{k-1} \cdots d_{1} \cdot(-6)+-2 d_{0} \equiv 0 \quad(\bmod 7) \\
& \quad \text { iff } d_{k} d_{k-1} \cdots d_{1}+-2 d_{0} \equiv 0 \quad(\bmod 7) \\
& \quad \text { iff } 7 \mid\left(d_{k} d_{k-1} \cdots d_{1}+-2 d_{0}\right) .
\end{aligned}
$$

5) [20 points] Prove that if $a, b, n \in \mathbb{Z}_{>0}$ and $a^{n} \mid b^{n}$, then $a \mid b$.
[Hint: This would have been much harder in the last exam.]
Proof. We use Lemma 1.54 from the book. Write

$$
\begin{aligned}
a & =p_{1}^{e_{1}} \cdots p_{k}^{e_{k}} \\
b & =p_{1}^{f_{1}} \cdots p_{k}^{f_{k}}
\end{aligned}
$$

where p_{i} 's are distinct primes and $e_{i}, f_{i} \in \mathbb{Z}_{\geq 0}$. [We've sen in class that we can do this.] Then,

$$
\begin{aligned}
& a^{n}=p_{1}^{n \cdot e_{1}} \cdots p_{k}^{n \cdot e_{k}} \\
& b^{n}=p_{1}^{n \cdot f_{1}} \cdots p_{k}^{n \cdot f_{k}}
\end{aligned}
$$

and since $a^{n} \mid b^{n}$, we must have that $n \cdot e_{i} \leq n \cdot f_{i}$ for all $i \in\{1, \ldots, k\}$. But this means that $e_{i} \leq f_{i}$ for all $i \in\{1, \ldots, k\}$, and hence $a \mid b$.

