1) [25 points] Use the Extended Euclidean Algorithm to write the GCD of 69 and 48 as a linear combination of themselves. Show work!
[Hint: You should get 3 for the GCD!]
Solution. We have:

$$
\begin{aligned}
69 & =48 \cdot 1+21 \\
48 & =2 \cdot 21+6 \\
21 & =6 \cdot 3+3 \\
6 & =3 \cdot 2+0 .
\end{aligned}
$$

So, $\operatorname{gcd}(186,69)=3$. Now:

$$
\begin{aligned}
3 & =1 \cdot 21+(-3) \cdot 6 \\
& =1 \cdot 21+(-3) \cdot[48+(-2) \cdot 21] \\
& =7 \cdot 21+(-3) \cdot 48 \\
& =7 \cdot[69+(-1) \cdot 48]+(-3) \cdot 48 \\
& =7 \cdot 69+(-10) \cdot 48 /
\end{aligned}
$$

i.e.,

$$
3=7 \cdot 69+(-10) \cdot 48
$$

2) [15 points] Express 194 in base 3. Show work!

Solution. We have:

$$
\begin{aligned}
194 & =3 \cdot 64+2 \\
64 & =3 \cdot 21+1 \\
21 & =3 \cdot 7+0 \\
7 & =3 \cdot 2+1 \\
2 & =3 \cdot 0+2
\end{aligned}
$$

So, $194=2+1 \cdot 3+0 \cdot 3^{2}+1 \cdot 3^{3}+2 \cdot 3^{4}=(21012)_{3}$.
3) [30 points] Let $r, r^{\prime}, m \in \mathbb{Z} \backslash\{0\}$. Prove that if $(r, m)=\left(r^{\prime}, m\right)=1$, then $\left(r r^{\prime}, m\right)=1$.
[Note: This was a HW problem.]
Proof. Suppose that p is a prime such that p divides both $r r^{\prime}$ and m. [This would mean that $p \mid\left(r r^{\prime}, m\right)$, and hence we need to get a contradiction.] Since p is prime, Euclid's Lemma tells us that either $p \mid r$ or $p \mid r^{\prime}$. But that means that p is a common divisor of either r and m [as $p \mid m$ by assumption] or r^{\prime} and m. But both are impossible as the respective GCDs are 1. Therefore, there is no prime common divisor of $r r^{\prime}$ and m. Thus $\left(r r^{\prime}, m\right)=1$ [as if it was not one, this GCD would have a prime factor which would also be a common divisor.]
4) [30 points] Let $a, b, c \in \mathbb{Z} \backslash\{0\}$. Prove that if $a \mid b c$ and $d=(a, b)$, then $a \mid d c$.
[Hint: I shouldn't have to say this, but use Bezout's Theorem.]
Proof. By Bezout's Theorem, there are $r, s \in \mathbb{Z}$ such that:

$$
d=r a+s b .
$$

Also, since $a \mid b c$, there is $k \in \mathbb{Z}$ such that $b c=a k$. Then:

$$
d c=c(r a+s b)=(c r) a+s(b c)=(c r) a+s(a k)=(c r+s k) a .
$$

Since $c r+s k \in \mathbb{Z}$, we have that $a \mid d c$.

