
1) [12 points] Let F and G be families of sets. Prove that(⋃
F
)
\
(⋃
G
)
⊆
⋃

(F \ G) .

Partial credit: If you can’t do this or are stuck, I will give some credit [10 points] for the

definitions of x ∈ X \ Y , x ∈
⋃
F and ¬(x ∈

⋃
G).

Proof. Let x ∈ (
⋃
F) \ (

⋃
G). Then, x ∈

⋃
F and x 6∈

⋃
G. The former means that there

is A ∈ F such that x ∈ A. The latter means that for all B ∈ G, we have that x 6∈ B. So, we

have that A 6∈ G [as x ∈ A]. Hence, A ∈ F \ G. Thus, x ∈
⋃

(F \ G).

2) [12 points] Suppose R is a partial order on A, B1 ⊆ A, B2 ⊆ A, x1 the least upper bound

of B1, and x2 the least upper bound of B2. Prove that if B1 ⊆ B2, then x1Rx2 [or x1 4 x2,

as I usually write for ordering relations].

[Hint: Prove that x2 is an upper bound of B1.]

Partial credit: If you can’t do this or are stuck, I will give some credit [10 points] for the

definitions of upper bound and least upper bound.

[This was a homework problem.]

Proof. Let y ∈ B1. Since B1 ⊆ B2, we have that y ∈ B2. Also, as x2 is an upper bound of

B2, we have that y 4 x2. Since y ∈ B1 was arbitrary, x2 is an upper bound of B1.

Now, x1 is the least upper bound of B1 and x2 is an upper bound of B1, so x1 4 x2.
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3) [12 points] Let R be an equivalence relation on a set A. Prove that [x] ⊆ [y] iff xRy.

[Remember that [a] denotes the equivalence class of a.]

[This was done in class.]

Partial credit: If you can’t do this or are stuck, I will give half credit [10 points] for the

definitions of equivalence relation and equivalence class.

Proof. [→] Suppose [x] ⊆ [y]. Since R is reflexive [as R is an equivalence relation], we have

that xRx and hence x ∈ [x]. So, since [x] ⊆ [y], we get x ∈ [y]. By definition of equivalence

class, this means that xRy.

[←] Suppose that xRy and let a ∈ [x]. Then, aRx. Since R is transitive [as it is an equivalence

relation] and we have aRx and xRy, we have that aRy. By definition of equivalence class

again, we have a ∈ [y]. So, [x] ⊆ [y].

4) [12 points] Let f : A → C and g : B → C. Prove that if A and B are disjoint, then

(f ∪ g) : A ∪B → C.

[This was a homework problem.]

Partial credit: If you can’t do this or are stuck, I will give some credit [10 points] for the

definition of a function.

Proof. Let x ∈ A∪B. [We need to show that there is a unique y ∈ C such that (x, y) ∈ f∪g.]

Then, x ∈ A or x ∈ B.

Case 1: [Existence] Assume x ∈ A, since f : A→ C, there is y ∈ C such that (x, y) ∈ f , so

(x, y) ∈ f ∪ g.

[Uniqueness] If also (x, y′) ∈ f ∪ g, then (x, y′) ∈ f or (x, y′) ∈ g. If (x, y′) ∈ g, then x ∈ B

[as g : B → C], which is impossible as x ∈ A and A ∩ B = ∅. So, (x, y′) ∈ f . Since

f : A→ C, and (x, y), (x, y′) ∈ f , we have that y = y′.

Case 2: [Existence] Assume x ∈ B, since g : B → C, there is y ∈ C such that (x, y) ∈ g, so

(x, y) ∈ f ∪ g.

[Uniqueness] If also (x, y′) ∈ f ∪ g, then (x, y′) ∈ f or (x, y′) ∈ g. If (x, y′) ∈ f , then x ∈ A

[as f : A → C], which is impossible as x ∈ B and A ∩ B = ∅. So, (x, y′) ∈ g. Since

g : B → C, and (x, y), (x, y′) ∈ g, we have that y = y′.
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5) [13 points] Let f : A→ B and g : B → C. Prove that if g ◦ f is onto, then g is onto.

[This was done in class.]

Partial credit: If you can’t do this or are stuck, I will give some credit [10 points] for the

definition of an onto function.

Proof. Let c ∈ C. [Need b ∈ B such that g(b) = c.] Since g ◦ f : A → C is onto, there is

a ∈ A such that g ◦ f(a) = c, i.e., g(f(a)) = c. Since f(a) ∈ B we have that g(b) = c for

b = f(a).

6) [13 points] Prove that for any n ∈ Z≥1 we have

n∑
i=1

i3 =
n2(n + 1)2

4

Proof. We prove it by induction on n.

For n = 1 we have that:
1∑

i=1

i3 = 13 = 1 =
12 · 22

4
.

Now assume
n∑

i=1

i3 =
n2(n + 1)2

4

for some n ≥ 1. Then,

n+1∑
i=1

i3 =

[
n∑

i=1

i3

]
+ (n + 1)3

=
n2(n + 1)2

4
+ (n + 1)3 [by the IH]

= (n + 1)2
[
n2

4
+ (n + 1)

]

= (n + 1)2
[
n2 + 4n + 4

4

]

= (n + 1)2
[

(n + 2)2

4

]

=
(n + 1)2(n + 2)2

4
.
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7) [13 points] Prove that for any n ∈ Z≥0 we have (n + 4)! ≥ 4n.

Proof. We prove it by induction on n.

For n = 0 we have that (0 + 4)! = 24 ≥ 1 = 40.

Now assume that (n + 4)! ≥ 4n for some n ≥ 0. Then,

(n + 5)! = (n + 5) · (n + 4)!

≥ (n + 5) · 4n [by the IH]

≥ 5 · 4n [as n ≥ 0]

> 4 · 4n = 4n+1 [as 5 > 4].
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8) [13 points] Consider the sequence an defined as follows:

a0 = 1,

an+1 = 1 +
1

an
, for n ≥ 0.

Prove that for all n ≥ 0 we have

an =
Fn+2

Fn+1

,

where Fn is the n-th Fibonacci number.

[Remember: F0 = 0, F1 = 1 and Fn = Fn−1 + Fn−2 for n ≥ 2.]

[This was done in a video.]

Proof. We prove it by induction on n.

For n = 0 we have

a0 = 1 =
1

1
=

F2

F1

.

Now assume that

an =
Fn+2

Fn+1

for some n ≥ 0. Then,

an+1 = 1 +
1

an

= 1 +
1

Fn+2/Fn+1

= 1 +
Fn+1

Fn+2

=
Fn+2 + Fn+1

Fn+2

=
Fn+3

Fn+2

.
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