1) [12 points] Let \mathcal{F} and \mathcal{G} be families of sets. Prove that

$$
(\bigcup \mathcal{F}) \backslash(\bigcup \mathcal{G}) \subseteq \bigcup(\mathcal{F} \backslash \mathcal{G})
$$

Partial credit: If you can't do this or are stuck, I will give some credit [10 points] for the definitions of $x \in X \backslash Y, x \in \bigcup \mathcal{F}$ and $\neg(x \in \bigcup \mathcal{G})$.

Proof. Let $x \in(\bigcup \mathcal{F}) \backslash(\bigcup \mathcal{G})$. Then, $x \in \bigcup \mathcal{F}$ and $x \notin \bigcup \mathcal{G}$. The former means that there is $A \in \mathcal{F}$ such that $x \in A$. The latter means that for all $B \in \mathcal{G}$, we have that $x \notin B$. So, we have that $A \notin \mathcal{G}[$ as $x \in A]$. Hence, $A \in \mathcal{F} \backslash \mathcal{G}$. Thus, $x \in \bigcup(\mathcal{F} \backslash \mathcal{G})$.
2) [12 points] Suppose R is a partial order on $A, B_{1} \subseteq A, B_{2} \subseteq A, x_{1}$ the least upper bound of B_{1}, and x_{2} the least upper bound of B_{2}. Prove that if $B_{1} \subseteq B_{2}$, then $x_{1} R x_{2}$ [or $x_{1} \preccurlyeq x_{2}$, as I usually write for ordering relations].
[Hint: Prove that x_{2} is an upper bound of B_{1}.]
Partial credit: If you can't do this or are stuck, I will give some credit [10 points] for the definitions of upper bound and least upper bound.
[This was a homework problem.]
Proof. Let $y \in B_{1}$. Since $B_{1} \subseteq B_{2}$, we have that $y \in B_{2}$. Also, as x_{2} is an upper bound of B_{2}, we have that $y \preccurlyeq x_{2}$. Since $y \in B_{1}$ was arbitrary, x_{2} is an upper bound of B_{1}.
Now, x_{1} is the least upper bound of B_{1} and x_{2} is an upper bound of B_{1}, so $x_{1} \preccurlyeq x_{2}$.
3) [12 points] Let R be an equivalence relation on a set A. Prove that $[x] \subseteq[y]$ iff $x R y$. [Remember that $[a]$ denotes the equivalence class of a.]
[This was done in class.]
Partial credit: If you can't do this or are stuck, I will give half credit [10 points] for the definitions of equivalence relation and equivalence class.

Proof. $[\rightarrow]$ Suppose $[x] \subseteq[y]$. Since R is reflexive [as R is an equivalence relation], we have that $x R x$ and hence $x \in[x]$. So, since $[x] \subseteq[y]$, we get $x \in[y]$. By definition of equivalence class, this means that $x R y$.
$[\leftarrow]$ Suppose that $x R y$ and let $a \in[x]$. Then, $a R x$. Since R is transitive [as it is an equivalence relation] and we have $a R x$ and $x R y$, we have that $a R y$. By definition of equivalence class again, we have $a \in[y]$. So, $[x] \subseteq[y]$.
4) [12 points] Let $f: A \rightarrow C$ and $g: B \rightarrow C$. Prove that if A and B are disjoint, then $(f \cup g): A \cup B \rightarrow C$.
[This was a homework problem.]
Partial credit: If you can't do this or are stuck, I will give some credit [10 points] for the definition of a function.

Proof. Let $x \in A \cup B$. [We need to show that there is a unique $y \in C$ such that $(x, y) \in f \cup g$.] Then, $x \in A$ or $x \in B$.
Case 1: [Existence] Assume $x \in A$, since $f: A \rightarrow C$, there is $y \in C$ such that $(x, y) \in f$, so $(x, y) \in f \cup g$.
[Uniqueness] If also $\left(x, y^{\prime}\right) \in f \cup g$, then $\left(x, y^{\prime}\right) \in f$ or $\left(x, y^{\prime}\right) \in g$. If $\left(x, y^{\prime}\right) \in g$, then $x \in B$ [as $g: B \rightarrow C$], which is impossible as $x \in A$ and $A \cap B=\varnothing$. So, $\left(x, y^{\prime}\right) \in f$. Since $f: A \rightarrow C$, and $(x, y),\left(x, y^{\prime}\right) \in f$, we have that $y=y^{\prime}$.
Case 2: [Existence] Assume $x \in B$, since $g: B \rightarrow C$, there is $y \in C$ such that $(x, y) \in g$, so $(x, y) \in f \cup g$.
[Uniqueness] If also $\left(x, y^{\prime}\right) \in f \cup g$, then $\left(x, y^{\prime}\right) \in f$ or $\left(x, y^{\prime}\right) \in g$. If $\left(x, y^{\prime}\right) \in f$, then $x \in A$ [as $f: A \rightarrow C]$, which is impossible as $x \in B$ and $A \cap B=\varnothing$. So, $\left(x, y^{\prime}\right) \in g$. Since $g: B \rightarrow C$, and $(x, y),\left(x, y^{\prime}\right) \in g$, we have that $y=y^{\prime}$.
5) [13 points] Let $f: A \rightarrow B$ and $g: B \rightarrow C$. Prove that if $g \circ f$ is onto, then g is onto. [This was done in class.]
Partial credit: If you can't do this or are stuck, I will give some credit [10 points] for the definition of an onto function.

Proof. Let $c \in C$. [Need $b \in B$ such that $g(b)=c$.] Since $g \circ f: A \rightarrow C$ is onto, there is $a \in A$ such that $g \circ f(a)=c$, i.e., $g(f(a))=c$. Since $f(a) \in B$ we have that $g(b)=c$ for $b=f(a)$.
6) [13 points] Prove that for any $n \in \mathbb{Z}_{\geq 1}$ we have

$$
\sum_{i=1}^{n} i^{3}=\frac{n^{2}(n+1)^{2}}{4}
$$

Proof. We prove it by induction on n.
For $n=1$ we have that:

$$
\sum_{i=1}^{1} i^{3}=1^{3}=1=\frac{1^{2} \cdot 2^{2}}{4}
$$

Now assume

$$
\sum_{i=1}^{n} i^{3}=\frac{n^{2}(n+1)^{2}}{4}
$$

for some $n \geq 1$. Then,

$$
\begin{aligned}
\sum_{i=1}^{n+1} i^{3} & =\left[\sum_{i=1}^{n} i^{3}\right]+(n+1)^{3} \\
& =\frac{n^{2}(n+1)^{2}}{4}+(n+1)^{3} \quad \quad[\text { by the } \mathrm{IH}] \\
& =(n+1)^{2}\left[\frac{n^{2}}{4}+(n+1)\right] \\
& =(n+1)^{2}\left[\frac{n^{2}+4 n+4}{4}\right] \\
& =(n+1)^{2}\left[\frac{(n+2)^{2}}{4}\right] \\
& =\frac{(n+1)^{2}(n+2)^{2}}{4}
\end{aligned}
$$

7) [13 points] Prove that for any $n \in \mathbb{Z}_{\geq 0}$ we have $(n+4)!\geq 4^{n}$.

Proof. We prove it by induction on n.
For $n=0$ we have that $(0+4)!=24 \geq 1=4^{0}$.
Now assume that $(n+4)!\geq 4^{n}$ for some $n \geq 0$. Then,

$$
\begin{aligned}
(n+5)! & =(n+5) \cdot(n+4)! & & \\
& \geq(n+5) \cdot 4^{n} & & {[\text { by the } \mathrm{IH}] } \\
& \geq 5 \cdot 4^{n} & & {[\text { as } n \geq 0] } \\
& >4 \cdot 4^{n}=4^{n+1} & & {[\text { as } 5>4] . }
\end{aligned}
$$

8) [13 points] Consider the sequence a_{n} defined as follows:

$$
\begin{aligned}
a_{0} & =1 \\
a_{n+1} & =1+\frac{1}{a_{n}}, \text { for } n \geq 0 .
\end{aligned}
$$

Prove that for all $n \geq 0$ we have

$$
a_{n}=\frac{F_{n+2}}{F_{n+1}}
$$

where F_{n} is the n-th Fibonacci number.
[Remember: $F_{0}=0, F_{1}=1$ and $F_{n}=F_{n-1}+F_{n-2}$ for $n \geq 2$.]
[This was done in a video.]
Proof. We prove it by induction on n.
For $n=0$ we have

$$
a_{0}=1=\frac{1}{1}=\frac{F_{2}}{F_{1}} .
$$

Now assume that

$$
a_{n}=\frac{F_{n+2}}{F_{n+1}}
$$

for some $n \geq 0$. Then,

$$
\begin{aligned}
a_{n+1} & =1+\frac{1}{a_{n}} \\
& =1+\frac{1}{F_{n+2} / F_{n+1}} \\
& =1+\frac{F_{n+1}}{F_{n+2}} \\
& =\frac{F_{n+2}+F_{n+1}}{F_{n+2}} \\
& =\frac{F_{n+3}}{F_{n+2}}
\end{aligned}
$$

