1) [25 points] Let n be a [fixed] positive integer and define:

$$
R=\{(a, b) \in \mathbb{Z} \times \mathbb{Z}|n|(a-b)\}
$$

Prove that R is an equivalence relation on \mathbb{Z}. [Remember, $x \mid y$ if there is $k \in \mathbb{Z}$ such that $y=x \cdot k$.]
[I mentioned this result in class and quickly said, but did not write, all the steps.]
Partial credit: If you can't do this or are stuck, I will give half credit [12 points] for the definitions of symmetric, reflexive and transitive relations.

Proof. [Reflexive:] Let $a \in \mathbb{Z}$. Since $n \mid 0=a-a$, [as $0=n \cdot 0$ and $0 \in \mathbb{Z}$], we have $a R a$.
[Symmetric:] Suppose that $a R b$. Then, $n \mid(a-b)$, i.e., $(a-b)=n \cdot k$ for some $k \in \mathbb{Z}$. Then, $(b-a)=n \cdot(-k)$. Since $-k \in \mathbb{Z}[$ as $k \in \mathbb{Z}]$, we have that $n \mid(b-a)$. Thus, $b R a$.
[Transitive:] Suppose that $a R b$ and $b R c$. Then, $n \mid(a-b)$ and $n \mid(b-c)$. So, there are $k, l \in \mathbb{Z}$ such that $(a-b)=n \cdot k$ and $(b-c)=n \cdot l$. Thus, $(a-c)=(a-b)+(b-c)=n \cdot k+n \cdot l=n \cdot(k+l)$. Since $k+l \in \mathbb{Z}[$ as $k, l \in \mathbb{Z}]$, we have that $n \mid(a-c)$, and so $a R c$.
2) [25 points] Let $f: A \rightarrow B$ and $g: B \rightarrow C$. Prove that if $g \circ f$ is one-to-one, then f is one-to-one.
[This was a homework problem.]
Partial credit: If you can't do this or are stuck, I will give some credit [10 points] for the definition of one-to-one.

Proof. Suppose that $f(a)=f\left(a^{\prime}\right)$. [We need $a=a^{\prime}$.] Then, $g(f(a))=g\left(f\left(a^{\prime}\right)\right)$, i.e., $g \circ f(a)=g \circ f\left(a^{\prime}\right)$. Since $g \circ f$ is one-to-one, we have that $a=a^{\prime}$.
3) [25 points] Let $f: A \rightarrow B$ and $g: B \rightarrow C$. Prove that if f is onto and g is not one-to-one, then $g \circ f$ is not one-to-one.
[This was a homework problem.]
Partial credit: If you can't do this or are stuck, I will give some credit [12 points] for the definition of onto and the negation of the definition of one-to-one.

Proof. Since g is not one-to-one, there are $b, b^{\prime} \in B$, with $b \neq b^{\prime}$, such that $g(b)=g\left(b^{\prime}\right)$. Since f is onto, there are $a, a^{\prime} \in A$ such that $f(a)=b$ and $f\left(a^{\prime}\right)=b^{\prime}$. Since $b \neq b^{\prime}$, we have that $a \neq a^{\prime}$. Also, we now have $g(f(a))=g\left(f\left(a^{\prime}\right)\right)$ with $a \neq a^{\prime}$, so $g \circ f$ is not one-to-one.
4) [25 points] Let $f: A \rightarrow B$ and $g: B \rightarrow A$. Prove that if f is onto and $g \circ f=i_{A}$, then $f \circ g=i_{B}$. [Note that this means that $g=f^{-1}$.]
[This was done in a video.]
Proof. Let $b \in B$. [Need to show that $f \circ g(b)=b$.] Since f is onto, there is $a \in A$ such that $f(a)=b$. So, $g(f(a))=g(b)$. But, since $g \circ f=i_{A}$, we have that $g(f(a))=a$. So, $g(b)=a$ and then $f \circ g(b)=f(g(b))=f(a)=b$.

Alternative Proof. Since $g \circ f=i_{A}$, we have that f in one-to-one. So, since it is also onto, we have that $f^{-1}: B \rightarrow A$. So,

$$
f \circ g=f \circ g \circ i_{B}=f \circ g \circ\left(f \circ f^{-1}\right)=f \circ(g \circ f) \circ f^{-1}=f \circ i_{A} \circ f^{-1}=f \circ f^{-1}=i_{B}
$$

