1) [20 points] Let a, b and c be integers such that $a \mid b$. Prove that $a \mid(b+c)$ if and only if $a \mid c$.
[Remember: If $x, y \in \mathbb{Z}$, then $x \mid y$ denotes " x divides y ", which means that there is some $z \in \mathbb{Z}$ such that $y=x \cdot z$.]

Proof. Let $a, b, c \in Z$ and assume that $a \mid b$. Then, we have that $b=a \cdot k$ for some $k \in \mathbb{Z}$.
$[\rightarrow]$ Assume that $a \mid(b+c)$. Then, $(b+c)=a \cdot l$ for some $l \in \mathbb{Z}$. Then, $c=(b+c)-b=$ $a \cdot l-a \cdot k=a \cdot(l-k)$. Since $l-k \in \mathbb{Z}[$ since $k, l \in \mathbb{Z}]$ we have that $a \mid(b+c)$.
$[\leftarrow]$ Assume now that $a \mid c$. Then, $c=a \cdot l$ for some $l \in \mathbb{Z}$. Hence, $b+c=a \cdot k+a \cdot l=a \cdot(k+l)$. Since $k+l \in \mathbb{Z}[$ as $k, l \in \mathbb{Z}]$, we have that $a \mid(b+c)$.
2) [20 points] Let U be any set. Prove that there is a unique $A \in \mathscr{P}(U)$ such that for all $B \in \mathscr{P}(U)$, we have $A \cap B=B$. [This was a HW problem.]

Proof. [Existence] Let $A=U$ and $B \in \mathscr{P}(U)$. Then, $B \subseteq U$ and hence $A \cap B=U \cap B=B$. [Uniqueness] Suppose that for some $A^{\prime} \in \mathscr{P}(U)$ we have that for all $B \in \mathscr{P}(U)$ we have $A^{\prime} \cap B=B$. [We need to show $A^{\prime}=U$.] In particular, we can take $B=U$ [as $U \subseteq U$ implies that $U \in \mathscr{P}(U)]$ and then $A^{\prime} \cap U=U$. On the other hand, since $A^{\prime} \in \mathscr{P}(U)$, we have that $A^{\prime} \subseteq U$, and thus $A^{\prime} \cap U=A^{\prime}$. Therefore, we have that $A^{\prime}=U$.
3) [20 points] Prove that if x is an integer, then $x^{2}+3 x+1$ is odd. [This one is not exactly a HW problem, but a slight twist on one.]

Proof. Since $x \in \mathbb{Z}$, we have that x is either even or odd.
Case 1: Assume x is even. Then, $x=2 k$ for some $k \in k$. Hence,

$$
x^{2}+3 x+1=(2 k)^{2}+6 k+1=4 k^{2}+6 k+1=2 \cdot\left(2 k^{2}+3 k\right)+1 .
$$

Since $2 k^{2}+3 k \in \mathbb{Z}$ [since $\left.k \in \mathbb{Z}\right]$, we have that $x^{2}+3 x+1$ is odd.
Case 2: Assume x is odd. Then, $x=2 k+1$ for some $k \in \mathbb{Z}$. Hence,

$$
\left.\left.\begin{array}{rl}
x^{2}+3 k+1=(2 k+1)^{2}+3(2 k+1)+1= & \left(4 k^{2}\right.
\end{array}\right) 4 k+1\right)+(6 k+3)+1 . ~\left(2 k^{2}+5 k+2\right)+1 . ~ \$ ~ 4 k^{2}+10 k+5=2 \cdot(2)
$$

Since $2 k^{2}+5 k+2 \in \mathbb{Z}$ [since $\left.k \in \mathbb{Z}\right]$, we have that x is odd.
4) [20 points] Suppose the $I \neq \varnothing$ is a set of indices and let $\left\{A_{i} \mid i \in I\right\}$ and $\left\{B_{i} \mid i \in I\right\}$ be indexed families of sets. Prove that

$$
\bigcup_{i \in I}\left(A_{i} \backslash B_{i}\right) \subseteq\left(\bigcup_{i \in I} A_{i}\right) \backslash\left(\bigcap_{i \in I} B_{i}\right) .
$$

[This is from the book and was done in a video. You also did something similar in HW.]
Proof. Let $x \in \bigcup_{i \in I}\left(A_{i} \backslash B_{i}\right)$. Then, there is $i_{0} \in I$ such that $x \in A_{i_{0}} \backslash B_{i_{0}}$, i.e., such that $x \in A_{i_{0}}$ and $x \notin B_{i_{0}}$.
Since $x \in A_{i_{0}}$, we have that $x \in \bigcup_{i \in I} A_{i}$.
Since $x \notin B_{i_{0}}$, we have that $x \notin \bigcap_{i \in I} B_{i}$.
Thus, $x \in\left(\bigcup_{i \in I} A_{i}\right) \backslash\left(\bigcap_{i \in I} B_{i}\right)$.
5) [20 points] Suppose \mathcal{F}, \mathcal{G} and \mathcal{H} are non-empty families of sets and for every $A \in \mathcal{F}$ and $B \in \mathcal{G}$, we have that $A \cup B \in \mathcal{H}$. Prove that $\bigcap \mathcal{H} \subseteq(\bigcap \mathcal{F}) \cup(\bigcap \mathcal{G})$. [This was a HW problem.]

Proof. Let $x \in \bigcap \mathcal{H}$. Then, for all $X \in \mathcal{H}$, we have that $x \in X$. Suppose that $x \notin \bigcap \mathcal{F}$, i.e., there is some $A \in \mathcal{F}$ such that $x \notin A$. [Need to show that $x \in \bigcap \mathcal{G}$.] Let $B \in \mathcal{G}$ [arbitrary]. Now, by assumption $A \cup B \in \mathcal{H}$ [with the $A \in \mathcal{F}$ and $B \in \mathcal{G}$ as above!]. Then, we have that $x \in A \cup B$. But, by assumption $x \notin A$, and hence $x \in B$. Since B was an arbitrary element of \mathcal{G}, we have that $x \in \bigcap \mathcal{G}$.

