1) [25 points] Let U be any set. Prove that there is a unique $A \in \mathscr{P}(U)$ such that for all $B \in \mathscr{P}(U)$, we have $A \cup B=B$.
[This very similar to HW problem on the last test, but we had $A \cap B=B$ instead of $A \cup B=B$. This current one was also done as an example in class and on a video.]

Proof. [Existence:] Let $A=\varnothing$. Then, for any $B \subseteq U$, we have that $A \cup B=\varnothing \cup B=B$.
[Uniqueness:] Suppose that A^{\prime} has the same property, i.e., for all $B \in \mathscr{P}(U)$ we have $A^{\prime} \cup B=B$. [We need to show that $A^{\prime}=\varnothing$.] Then, on the one hand, since $\varnothing \in \mathscr{P}(U)$, we have that $A^{\prime} \cap \varnothing=A^{\prime}$ [by the assumed property of $\left.A^{\prime}\right]$, but on the other hand $A^{\prime} \cap \varnothing=\varnothing$ [as discussed in the existence part]. So, $A^{\prime}=\varnothing$.
2) [25 points] Prove that if x is an integer not divisible by 3 , then $x^{2}+3 x-1$ is divisible by 3 .
[Hint: If an integer n is not divisible by 3 , then its remainder when divided by 3 is either 1 or 2 . So, in other words, n is not divisible by 3 iff either $n=3 k+1$ or $n=3 k+2$ for some $k \in \mathbb{Z}$.]

Proof. Following the hint, since x is not divisible by 3, we have that either $x=3 k+1$ or $x=3 k+2$, for some $k \in \mathbb{Z}$. We then divide the proof in cases:
Case 1: $x=3 k+1$ for some $k \in \mathbb{Z}$. Then,

$$
\begin{aligned}
x^{3}+3 x-1 & =(3 k+1)^{2}+3(3 k+1)-1 \\
& =\left(9 k^{2}+6 k+1\right)+(9 k+3)-1 \\
& =9 k^{2}+15 k=3\left(3 k^{2}+5 k\right) .
\end{aligned}
$$

Since $k^{2}+5 k \in \mathbb{Z}[$ as $k \in \mathbb{Z}]$, we have that $3 \mid\left(x^{3}+3 x-1\right)$.
Case 2: $x=3 k+2$ for some $k \in \mathbb{Z}$. Then,

$$
\begin{aligned}
x^{3}+3 x-1 & =(3 k+2)^{2}+3(3 k+2)-1 \\
& =\left(9 k^{2}+12 k+4\right)+(9 k+6)-1 \\
& =9 k^{2}+21 k+9=3\left(3 k^{2}+7 k+3\right) .
\end{aligned}
$$

Since $k^{2}+7 k+3 \in \mathbb{Z}[$ as $k \in \mathbb{Z}]$, we have that $3 \mid\left(x^{3}+3 x-1\right)$.
3) [25 points] Suppose the $I \neq \varnothing$ is a set of indices and let $\left\{A_{i} \mid i \in I\right\}$ and $\left\{B_{i} \mid i \in I\right\}$ be indexed families of sets. Prove that

$$
\bigcup_{i \in I}\left(A_{i} \cap B_{i}\right) \subseteq\left(\bigcup_{i \in I} A_{i}\right) \cap\left(\bigcup_{i \in I} B_{i}\right) .
$$

[This is a HW problem, similar to the problem in the last exam.]
Proof. Let $x \in \bigcup_{i \in I}\left(A_{i} \cap B_{i}\right)$. So, for some $i_{0} \in I$, we have that $x \in A_{i_{0}} \cap B_{i_{0}}$, i.e., $x \in A_{i_{0}}$ and $x \in B_{i_{0}}$.
The former means that $x \in \bigcup_{i \in I} A_{i}$, while the latter means that $x \in \bigcup_{i \in I} B_{i}$.
Hence, since both occur, we have that $x \in\left(\bigcup_{i \in I} A_{i}\right) \cap\left(\bigcup_{i \in I} B_{i}\right)$.
4) [25 points] Suppose the m and n are integers. Prove that if $m \cdot n$ is even, then either m or n is even. [This was an example done in class.]

Proof. Assume that $m n$ is even and that m is odd. [We need to prove that n is even.] Suppose that n is odd. [Need then to derive a contradiction.] So, there are $k, l \in \mathbb{Z}$ such that $m=2 k+1$ and $n=2 l+1$. So, $m n=(2 k+1)(2 l+1)=4 k l+2 k+2 k+1=2(k l+k+l)+1$. Since $k l+k+l \in \mathbb{Z}[$ as $k, l \in \mathbb{Z}]$, we have that $m n$ is odd, a contradiction. Hence, n must be even.

