- **1)** Let $I = \{-1, 0, 1, 2\}$ and $A_i = \{0, i, i^2, -i^3\}.$
 - (a) [5 points] Write out explicitly the sets A_i for $i \in I$.

Solution. We have:

$$A_{-1} = \{-1, 0, 1\},$$

$$A_0 = \{0\},$$

$$A_1 = \{-1, 0, 1\},$$

$$A_2 = \{-8, 0, 2, 4\}.$$

(b) [5 points] Compute $\bigcup_{i \in I} A_i$.	
Solution. We have $\bigcup_{i \in I} A_i = \{-8, -1, 0, 1, 2, 4\}.$	
(c) [5 points] Compute $\bigcap_{i \in I} A_i$.	
Solution. We have $\bigcap_{i \in I} A_i = \{0\}.$	

2) [15 points] Express $\exists ! x \in A (P(x))$ without using $\exists !$.

Solution. We have

$$\exists ! x \in A \ (P(x)) \sim \exists x \in A \ [P(x) \land \forall y \in A \ (P(y) \to x = y)].$$

3) [15 points] Show that

$$\exists x \left(P(x) \to Q(x) \right) \sim \left[\forall x (P(x)) \right] \to \left[\exists x (Q(x)) \right].$$

Solution. We have:

$$\exists x (P(x) \to Q(x)) \sim \exists x (\neg P(x) \lor Q(x))$$
$$\sim \exists x (\neg P(x)) \lor \exists x (Q(x))$$
$$\sim \neg [\forall x (\neg \neg P(x))] \lor \exists x (Q(x))$$
$$\sim \neg [\forall x (P(x))] \lor \exists x (Q(x))$$
$$\sim [\forall x (P(x))] \to [\exists x (Q(x))].$$

4) Analyze the following statements:

(a) [10 points] Someone likes a person who doesn't like anyone.

Solution. Let L(x, y) be "x likes y". Then, the statement is:

$$\exists x \left[\exists y \left(L(x,y) \land \left(\forall z (\neg L(y,z)) \right) \right) \right].$$

(b) [10 points] No father is happy unless all his children are happy.

Solution. Let F(x, y) be "x is y's father" and H(x) be "x is happy". Then, the statement is:

$$\forall x \left[\forall y \left(F(x, y) \to (\neg H(y) \to \neg H(x)) \right) \right].$$

5) Let $A = \{x \in \mathbb{R} \mid x > 0\}$ and consider the statement

$$\neg \left[\forall \epsilon \in A \left(\exists \delta \in A \left(\forall x (|x - a| < \delta \to |x^n - L| < \epsilon) \right) \right) \right].$$

[Note: Although irrelevant for your solution, but simply for your information, the statement above is the negation of $\lim_{x\to a} x^n = L$.]

(a) [5 points] State which are the free and which are the bound variables of the statement.

Solution. ϵ , δ and x are bound. a, n and L are free. [A is given, so it is not a variable.]

(b) [15 points] Reexpress the statement as its equivalent positive statement.

Solution. We have:

$$\neg \left[\forall \epsilon \in A \left(\exists \delta \in A \left(\forall x (|x-a| < \delta \rightarrow |x^n - L| < \epsilon \right) \right) \right] \sim \exists \epsilon \in A \neg \left(\exists \delta \in A \left(\forall x (|x-a| < \delta \rightarrow |x^n - L| < \epsilon \right) \right) \right) \sim \exists \epsilon \in A \left(\forall \delta \in A \neg \left(\forall x (|x-a| < \delta \rightarrow |x^n - L| < \epsilon \right) \right) \right) \sim \exists \epsilon \in A \left(\forall \delta \in A \left(\exists x \neg (|x-a| < \delta \rightarrow |x^n - L| < \epsilon \right) \right) \right) \sim \exists \epsilon \in A \left(\forall \delta \in A \left(\exists x (|x-a| < \delta \land |x^n - L| < \epsilon \right) \right) \right)$$

6) [15 points] Analyze the logical form of the following statement. [You may use \in , \notin , =, \neq , \wedge , \vee , \rightarrow , \leftrightarrow , \forall and \exists , but not \subseteq , \notin , \mathscr{P} , \cap , \cup , \setminus , {, } or \neg .]

$$\bigcap_{i \in I} A_i \subseteq \mathscr{P}(B) \setminus \bigcup_{i \in I} C_i.$$

Solution. We have:

$$\bigcap_{i \in I} A_i \subseteq \mathscr{P}(B) \setminus \bigcup_{i \in I} C_i \sim \forall x \left[\left(x \in \bigcap_{i \in I} A_i \right) \to \left(x \in \mathscr{P}(B) \setminus \bigcup_{i \in I} C_i \right) \right] \\ \sim \forall x \left[(\forall i \in I(x \in A_i)) \to \left(x \in \mathscr{P}(B) \land \neg \left(x \in \bigcup_{i \in I} C_i \right) \right) \right] \\ \sim \forall x \left[(\forall i \in I(x \in A_i)) \to (x \subseteq B \land \neg (\exists i \in I(x \in C_i))) \right] \\ \sim \forall x \left[(\forall i \in I(x \in A_i)) \to ((\forall y \in x(y \in B)) \land (\forall i \in I(x \notin C_i))) \right]$$