1) Let $I=\{-1,0,1,2\}$ and $A_{i}=\left\{0, i, i^{2},-i^{3}\right\}$.
(a) [5 points] Write out explicitly the sets A_{i} for $i \in I$.

Solution. We have:

$$
\begin{aligned}
A_{-1} & =\{-1,0,1\} \\
A_{0} & =\{0\} \\
A_{1} & =\{-1,0,1\}, \\
A_{2} & =\{-8,0,2,4\} .
\end{aligned}
$$

(b) [5 points] Compute $\bigcup_{i \in I} A_{i}$.

Solution. We have $\bigcup_{i \in I} A_{i}=\{-8,-1,0,1,2,4\}$.
(c) [5 points] Compute $\bigcap_{i \in I} A_{i}$.

Solution. We have $\bigcap_{i \in I} A_{i}=\{0\}$.
2) [15 points] Express $\exists!x \in A(P(x))$ without using $\exists!$!.

Solution. We have

$$
\exists!x \in A(P(x)) \sim \exists x \in A[P(x) \wedge \forall y \in A(P(y) \rightarrow x=y)] .
$$

3) $[15$ points $]$ Show that

$$
\exists x(P(x) \rightarrow Q(x)) \sim[\forall x(P(x))] \rightarrow[\exists x(Q(x))]
$$

Solution. We have:

$$
\begin{aligned}
\exists x(P(x) \rightarrow Q(x)) & \sim \exists x(\neg P(x) \vee Q(x)) \\
& \sim \exists x(\neg P(x)) \vee \exists x(Q(x)) \\
& \sim \neg[\forall x(\neg \neg P(x))] \vee \exists x(Q(x)) \\
& \sim \neg[\forall x(P(x))] \vee \exists x(Q(x)) \\
& \sim[\forall x(P(x))] \rightarrow[\exists x(Q(x))] .
\end{aligned}
$$

4) Analyze the following statements:
(a) [10 points] Someone likes a person who doesn't like anyone.

Solution. Let $L(x, y)$ be " x likes y ". Then, the statement is:

$$
\exists x[\exists y(L(x, y) \wedge(\forall z(\neg L(y, z))))] .
$$

(b) [10 points] No father is happy unless all his children are happy.

Solution. Let $F(x, y)$ be " x is y 's father" and $H(x)$ be " x is happy". Then, the statement is:

$$
\forall x[\forall y(F(x, y) \rightarrow(\neg H(y) \rightarrow \neg H(x)))] .
$$

5) Let $A=\{x \in \mathbb{R} \mid x>0\}$ and consider the statement

$$
\neg\left[\forall \epsilon \in A\left(\exists \delta \in A\left(\forall x\left(|x-a|<\delta \rightarrow\left|x^{n}-L\right|<\epsilon\right)\right)\right)\right] .
$$

[Note: Although irrelevant for your solution, but simply for your information, the statement above is the negation of $\lim _{x \rightarrow a} x^{n}=L$.]
(a) [5 points] State which are the free and which are the bound variables of the statement.

Solution. ϵ, δ and x are bound. a, n and L are free. $[A$ is given, so it is not a variable.]
(b) [15 points] Reexpress the statement as its equivalent positive statement.

Solution. We have:

$$
\begin{aligned}
\neg & {\left[\forall \epsilon \in A\left(\exists \delta \in A\left(\forall x\left(|x-a|<\delta \rightarrow\left|x^{n}-L\right|<\epsilon\right)\right)\right)\right] } \\
& \sim \exists \epsilon \in A \neg\left(\exists \delta \in A\left(\forall x\left(|x-a|<\delta \rightarrow\left|x^{n}-L\right|<\epsilon\right)\right)\right) \\
& \sim \exists \epsilon \in A\left(\forall \delta \in A \neg\left(\forall x\left(|x-a|<\delta \rightarrow\left|x^{n}-L\right|<\epsilon\right)\right)\right) \\
& \sim \exists \epsilon \in A\left(\forall \delta \in A\left(\exists x \neg\left(|x-a|<\delta \rightarrow\left|x^{n}-L\right|<\epsilon\right)\right)\right) \\
& \sim \exists \epsilon \in A\left(\forall \delta \in A\left(\exists x\left(|x-a|<\delta \wedge\left|x^{n}-L\right| \geq \epsilon\right)\right)\right) .
\end{aligned}
$$

6) [15 points] Analyze the logical form of the following statement. [You may use $\in, \notin,=$, $\neq, \wedge, \vee, \rightarrow, \leftrightarrow, \forall$ and \exists, but $\operatorname{not} \subseteq, \nsubseteq, \mathscr{P}, \cap, \cup, \backslash,\{$,$\} or \neg$.]

$$
\bigcap_{i \in I} A_{i} \subseteq \mathscr{P}(B) \backslash \bigcup_{i \in I} C_{i}
$$

Solution. We have:

$$
\begin{aligned}
\bigcap_{i \in I} A_{i} \subseteq \mathscr{P}(B) \backslash \bigcup_{i \in I} C_{i} & \sim \forall x\left[\left(x \in \bigcap_{i \in I} A_{i}\right) \rightarrow\left(x \in \mathscr{P}(B) \backslash \bigcup_{i \in I} C_{i}\right)\right] \\
& \sim \forall x\left[\left(\forall i \in I\left(x \in A_{i}\right)\right) \rightarrow\left(x \in \mathscr{P}(B) \wedge \neg\left(x \in \bigcup_{i \in I} C_{i}\right)\right)\right] \\
& \sim \forall x\left[\left(\forall i \in I\left(x \in A_{i}\right)\right) \rightarrow\left(x \subseteq B \wedge \neg\left(\exists i \in I\left(x \in C_{i}\right)\right)\right)\right] \\
& \sim \forall x\left[\left(\forall i \in I\left(x \in A_{i}\right)\right) \rightarrow\left((\forall y \in x(y \in B)) \wedge\left(\forall i \in I\left(x \notin C_{i}\right)\right)\right)\right]
\end{aligned}
$$

