1) [15 points] Fill in the truth-table below:

P	Q	R	$\neg Q \wedge R$	$\neg P \vee R$	$[\neg Q \wedge R] \rightarrow[\neg P \vee R]$
T	T	T	F	T	T
T	T	F	F	F	T
T	F	T	T	T	T
T	F	F	F	F	T
F	T	T	F	T	T
F	T	F	F	T	T
F	F	T	T	T	T
F	F	F	F	T	T

2) [15 points] Use the rules of formal logic to simplify $\neg(\neg P \wedge Q) \vee(P \wedge \neg R)$. In each step, state which rule you've used!
[Hint: It should simplify to $P \vee \neg Q$.]
Solution. [This was a HW problem.]

$$
\begin{aligned}
\neg(\neg P \wedge Q) \vee(P \wedge \neg R) & \sim(\neg(\neg P) \vee \neg Q) \vee(P \wedge \neg R) & & \text { [DeMorgan's Law] } \\
& \sim(P \vee \neg Q) \vee(P \wedge \neg R) & & \text { [Double Negation] } \\
& \sim(\neg Q \vee P) \vee(P \wedge \neg R) & & \text { [Commutativity] } \\
& \sim \neg Q \vee[P \vee(P \wedge \neg R)] & & \text { [Associativity] } \\
& \sim \neg Q \vee P & & \text { [Absorption] } \\
& \sim P \vee \neg Q & & \text { [Commutativity]. }
\end{aligned}
$$

3) Sets and Venn Diagrams:
(a) [10 points] Fill in the following Venn Diagrams:

(b) [10 points] Give concrete examples of A, B and C for which

$$
(A \backslash B) \backslash C \neq(A \backslash B) \cup(A \cap C)
$$

Solution. Let $A=B=C=\{1\}$. Then, $A \backslash B=\varnothing$ and so $(A \backslash B) \backslash C=\varnothing$. On the other hand $(A \backslash B) \cup(A \cap C)=\varnothing \cup\{1\}=\{1\} \neq \varnothing$. So, the sets are different.
4) [15 points] Rewrite $\neg(P \leftrightarrow Q)$ using only \wedge, \vee and \neg [and P and Q, of course].

Solution. We have:

$$
\begin{aligned}
\neg(P \leftrightarrow Q) & \sim \neg[(P \rightarrow Q) \wedge(Q \rightarrow P)] \\
& \sim \neg(P \rightarrow Q) \vee \neg(Q \rightarrow P) \\
& \sim(P \wedge \neg Q) \vee(Q \wedge \neg P)
\end{aligned}
$$

5) [15 points] Show that $A \cup(B \backslash C)=(A \cup B) \backslash(C \backslash A)$ by showing that $x \in A \cup(B \backslash C)$ is [logically] equivalent to $x \in(A \cup B) \backslash(C \backslash A)$.

Solution. [This was a HW problem.]
We have:

$$
\begin{aligned}
x \in A \cup(B \backslash C) & \sim x \in A \vee x \in B \backslash C \\
& \sim x \in A \vee(x \in B \wedge \neg(x \in C)) \\
& \sim(x \in A \vee x \in B) \wedge(x \in A \vee \neg(x \in C)) \\
& \sim(x \in A \vee x \in B) \wedge \neg(\neg(x \in A) \wedge(x \in C)) \\
& \sim(x \in A \vee x \in B) \wedge \neg((x \in C) \wedge \neg(x \in A)) \\
& \sim(x \in A \cup B) \wedge \neg(x \in C \backslash A) \\
& \sim x \in(A \cup B) \backslash(C \backslash A) .
\end{aligned}
$$

6) Analyze the logical form of the following statements.
(a) [10 points] You will pass this test and be happy as long as you've studied or are used to logic.

Solution. Let

$$
\begin{aligned}
P & =\text { "you will pass the test"; } \\
H & =\text { "you will be happy"; } \\
S & =\text { "you've studied hard"; } \\
L & =\text { "you are used to logic" }
\end{aligned}
$$

Then, we have

$$
(S \vee L) \rightarrow(P \wedge H)
$$

(b) [10 points] Being relaxed but attentive is necessary, but not sufficient, to do well in exams.

Solution. Let

$$
\begin{aligned}
& R=\text { "you are relaxed"; } \\
& A=\text { "you are attentive"; } \\
& E=\text { "you will do well on the exam". }
\end{aligned}
$$

Then, we have

$$
[E \rightarrow(R \wedge A)] \wedge \neg[(R \wedge A) \rightarrow E]
$$

