Prelim Exam – Spring 2008 – Problem I.2

October 22, 2014

Does there exist a simple group G of order 336 such that for some positive integer d, G has exactly 6 (distinct) subgroups of order d?

Solution. No! Suppose there is, and let

$$\mathcal{S} \stackrel{\text{def}}{=} \{ H \le G : |H| = d \}.$$

Then, by assumption, |S| = 6. We have that G acts on S by conjugation, as for $H \in S$ and $g \in G$, we have $|gHg^{-1}| = |H| = d$.

Thus, we have a [permutation] representation:

$$\phi: G \to S_6 = \operatorname{Sym}(\mathfrak{S})$$

Since G is simple and ker $\phi \leq G$, we have that ker $\phi = 1$ or ker $\phi = G$.

If ker $\phi = G$, then for all $g \in G$ and for any $H \in S$, we have $gHq^{-1} = H$. But this would mean that $H \leq G$, and hence d = 1 or d = |G| = 336. In either case, we have a contradiction, as there is only one subgroups of order 1 [namely $\{1\}$] and one subgroup of order 336 [namely, G itself].

Hence, ker $\phi = 1$, and hence ϕ is injective. But then, $336 = |G| | |S_6| = 6!$ [by the *First Isomorphism Theorem*], which is a contradiction, as 7 | 336, but 7 \nmid 6!.

So, there can be no d as above.

1