Prelim Exam - Spring 2008 - Problem I. 2

October 22, 2014

Does there exist a simple group G of order 336 such that for some positive integer d, G has exactly 6 (distinct) subgroups of order d ?

Solution. No! Suppose there is, and let

$$
\mathcal{S} \stackrel{\text { def }}{=}\{H \leq G:|H|=d\} .
$$

Then, by assumption, $|\mathcal{S}|=6$. We have that G acts on \mathcal{S} by conjugation, as for $H \in \mathcal{S}$ and $g \in G$, we have $\left|g H g^{-1}\right|=|H|=d$.

Thus, we have a [permutation] representation:

$$
\phi: G \rightarrow S_{6}=\operatorname{Sym}(\mathcal{S})
$$

Since G is simple and $\operatorname{ker} \phi \unlhd G$, we have that $\operatorname{ker} \phi=1$ or $\operatorname{ker} \phi=G$.

If $\operatorname{ker} \phi=G$, then for all $g \in G$ and for any $H \in \mathcal{S}$, we have $g H q^{-1}=H$. But this would mean that $H \unlhd G$, and hence $d=1$ or $d=|G|=336$. In either case, we have a contradiction, as there is only one subgroups of order 1 [namely $\{1\}$] and one subgroup of order 336 [namely, G itself].

Hence, $\operatorname{ker} \phi=1$, and hence ϕ is injective. But then, $336=|G|| | S_{6} \mid=6$! [by the First Isomorphism Theorem], which is a contradiction, as $7 \mid 336$, but $7 \nmid 6!$.

So, there can be no d as above.

