1) Compute the derivatives of the following functions. [No need to simplify your answers!]
(a) [6 points] $f(x)=\sqrt{x} \cdot \ln (\cos (x))$

Solution.

$$
\begin{aligned}
f^{\prime}(x) & =\frac{1}{2 \sqrt{x}} \cdot \ln (\cos (x))+\sqrt{x} \cdot \frac{\mathrm{~d}}{\mathrm{~d} x}(\ln (\cos (x))) \\
& =\frac{1}{2 \sqrt{x}} \cdot \ln (x \cdot \cos (x))+\sqrt{x}\left[\frac{1}{\cos (x)} \cdot(-\sin (x))\right] .
\end{aligned}
$$

(b) $[7$ points $] f(x)=\frac{x^{2}}{x \cdot \mathrm{e}^{x}+1}$

Solution.

$$
\begin{aligned}
f^{\prime}(x) & =\frac{2 x \cdot\left(x \cdot \mathrm{e}^{x}+1\right)-x^{2} \cdot \frac{\mathrm{~d}}{\mathrm{~d} x}\left(x \cdot \mathrm{e}^{x}+1\right)}{\left(x \cdot \mathrm{e}^{x}+1\right)^{2}} \\
& =\frac{2 x \cdot\left(x \cdot \mathrm{e}^{x}+1\right)-x^{2} \cdot\left(1 \cdot \mathrm{e}^{x}+x \cdot \mathrm{e}^{x}\right)}{\left(x \cdot \mathrm{e}^{x}+1\right)^{2}}
\end{aligned}
$$

(c) [7 points] $f(x)=x^{\arcsin (x)}$. [Note: $\arcsin (x)$ is the same as $\sin ^{-1}(x)$.]

Solution.

$$
\begin{aligned}
f^{\prime}(x) & =f(x) \cdot \frac{\mathrm{d}}{\mathrm{~d} x}(\ln (f(x))) \\
& =x^{\arcsin (x)} \cdot \frac{\mathrm{d}}{\mathrm{~d} x}\left(\ln \left(x^{\arcsin (x)}\right)\right) \\
& =x^{\arcsin (x)} \cdot \frac{\mathrm{d}}{\mathrm{~d} x}(\arcsin (x) \cdot \ln (x)) \\
& =x^{\arcsin (x)} \cdot\left(\frac{1}{\sqrt{1-x^{2}}} \cdot \ln (x)+\arcsin (x) \cdot \frac{1}{x}\right)
\end{aligned}
$$

2) [15 points] Find the equation of the line tangent to the curve given by

$$
x^{2}+y^{2}=x y^{3}+1
$$

at the point $(0,-1)$.
Solution. Taking derivatives [with respect to x] on both sides:

$$
2 x+2 y y^{\prime}=1 \cdot y^{3}+x \cdot 3 y^{2} \cdot y^{\prime}
$$

Solving for y^{\prime}, we get:

$$
y^{\prime}=\frac{y^{3}-2 x}{2 y-3 x y^{2}} .
$$

So, at $(0,-1)$ we have $y^{\prime}=1 / 2$. So, the equation of the tangent line is:

$$
y-(-1)=\frac{1}{2} \cdot(x-0) \quad \text { or } \quad y=\frac{x}{2}+1
$$

3) [15 points] An observer watches a racing car pass by on a straight track 10 meters away. [See picture below.] If the observer is turning his head at a rate of 1 radian per second when his distance to the car [labeled x in the picture below] is 20 meters, how fast is the car moving at that instant?

Solution. [We know θ^{\prime} and we want y^{\prime}.] We have that $\tan (\theta)=y / 10$ [for θ and y as in the picture]. Taking derivatives [with respect to time], we get

$$
\sec ^{2}(\theta) \cdot \theta^{\prime}=y^{\prime} / 10 \quad \text { and so } \quad y^{\prime}=10 \cdot \sec ^{2}(\theta) \cdot \theta^{\prime}
$$

When $x=20$, we have $\cos (\theta)=1 / 2$, and so $\sec ^{2}(\theta)=4$, and $\theta^{\prime}=1$. So, then we have $y^{\prime}=10 \cdot 4 \cdot 1=40$. So, the speed of the car at that instant is 40 meters per second.
4) [15 points] Use the tangent line approximation to estimate $\ln (1.1)$. Also, give the percentage error for the approximation. [Note: You can leave computations and log's indicated in the second part, but the first part must be a simple number.]

Solution. We have that

$$
\ln (1.1) \approx \ln (1)+\left.\frac{\mathrm{d}}{\mathrm{~d} x}(\ln (x))\right|_{x=1} \cdot(1.1-1)=0+\frac{1}{1} \cdot 0.1=0.1
$$

The percentage error is

$$
\frac{|\ln (1.1)-0.1|}{|\ln (1.1)|} \cdot 100 \% .
$$

[You could not compute it in the exam without a calculator, but this is approximately 4.92\%.]
5) [15 points] Find [absolute] maximum and minimum [both x-coordinate and corresponding value of the function] of $f(x)=-x+3 \sqrt[3]{x}$ in the interval $[-1,8]$.

Solution. First, we observe that $f(x)$ is continuous at the given closed interval. So, we can apply the method of Section 4.2.

We have

$$
f^{\prime}(x)=-1+\frac{1}{\sqrt[3]{x^{2}}}
$$

Then, $f^{\prime}(x)$ is not defined at $x=0$, but $f(x)$ is, so $x=0$ is a critical point. Also, $f^{\prime}(x)=0$ gives us

$$
\frac{1}{\sqrt[3]{x^{2}}}=1 \quad \Rightarrow \quad \sqrt[3]{x^{2}}=\frac{1}{1}=1 \quad \Rightarrow \quad x^{2}=1^{3}=1 \quad \Rightarrow \quad x= \pm 1
$$

So, we have three critical points: 0,1 and -1 . Thus:

x	$f(x)$
-1	-2
0	0
1	2
8	-2

So, the maximum is 2 and occurs at $x=1$ and the minimum is -2 and occurs at $x=-1,8$.
6) [20 points] Let $f(x)=2 x^{3}-3 x^{2}-12 x+6$. [Note: In all items below you can use "DNE" for "does not exist".]
(a) Give the intervals in which $f(x)$ is increasing and the intervals in which it is decreasing.

Solution. We have

$$
f^{\prime}(x)=6 x^{2}-6 x-12=6\left(x^{2}-x-2\right)=6(x+1)(x-2) .
$$

So, $f^{\prime}(x)=0$ at $x=-1,2$. We then have:

So, $f(x)$ is increasing on $(-\infty,-1)$ and $(2, \infty)$ and decreasing on $(-1,2)$.
(b) Give all critical points [x-coordinate only] and classify them as local maximum, local minimum or neither.

Solution. From the work above we see that the critical points occur at $x=-1$ and $x=2$. Also, we see that we have a local maximum at $x=-1$ and a local minimum at $x=2$.
(c) Give all intervals in which the graph of the function $f(x)$ is concave up and all intervals in which it is concave down.

Solution. We have

$$
f^{\prime \prime}(x)=6(2 x-1)
$$

So, $f^{\prime \prime}(x)=0$ at $x=1 / 2$. We then have:

So, $f(x)$ is concave up $(1 / 2, \infty)$ and concave down on $(-\infty, 1 / 2)$.
(d) Give all inflection points [x-coordinate only] of $f(x)$.

Solution. From the work above we have that $f(x)$ has an inflection point $x=1 / 2$.

