1) [12 points] Consider the graph $y=f(x)$ below:

Find [no need to justify]:
(i) $f(2)=1$
(ii) $\lim _{x \rightarrow-2} f(x)=1$
(iii) $\lim _{x \rightarrow 0} f(x)=-\infty$
(iv) $\lim _{x \rightarrow 2^{-}} f(x)=0$
(v) $\lim _{x \rightarrow 2^{+}} f(x)=2$
(vi) $\lim _{x \rightarrow \infty} f(x)=1$
2) [28 points] Compute the following limits. [Show work in all!]
(a) $\lim _{x \rightarrow 1} \frac{x^{2}+x-2}{x^{2}-2 x+1}$

Solution.

$$
\begin{aligned}
\lim _{x \rightarrow 1} \frac{x^{2}+x-2}{x^{2}-2 x+1} & =\lim _{x \rightarrow 1} \frac{(x-1)(x+2)}{(x-1)^{2}} \\
& =\lim _{x \rightarrow 1} \frac{x+2}{x-1}
\end{aligned}
$$

This gives us " $3 / 0$ ", some some kind of infinite limit. Analyzing the signs we see that $x+2$ is positive on both sides of 1 , while $x-1$ is positive on let left and negative on the right of one. This gives,

$$
\lim _{x \rightarrow 1^{+}} \frac{x^{2}+x-2}{x^{2}-2 x+1}=\lim _{x \rightarrow 1^{+}} \frac{x+2}{x-1}=+\infty
$$

and

$$
\lim _{x \rightarrow 1^{-}} \frac{x^{2}+x-2}{x^{2}-2 x+1}=\lim _{x \rightarrow 1^{-}} \frac{x+2}{x-1}=-\infty .
$$

Thus, $\lim _{x \rightarrow 1} \frac{x^{2}+x-2}{x^{2}-2 x+1}$ does not exist and is neither $+\infty$ nor $-\infty$. [It is a split infinite limit.]
(b) $\lim _{x \rightarrow 4} \frac{x-4}{\sqrt{x}-\sqrt{8-x}}$

Solution.

$$
\begin{aligned}
\lim _{x \rightarrow 4} \frac{x-4}{\sqrt{x}-\sqrt{8-x}} & =\lim _{x \rightarrow 4} \frac{x-4}{\sqrt{x}-\sqrt{8-x}} \cdot \frac{\sqrt{x}+\sqrt{8-x}}{\sqrt{x}+\sqrt{8-x}} \\
& =\lim _{x \rightarrow 4} \frac{(x-4)(\sqrt{x}+\sqrt{8-x})}{x-(8-x)} \\
& =\lim _{x \rightarrow 4} \frac{(x-4)(\sqrt{x}+\sqrt{8-x})}{2(x-4)} \\
& =\lim _{x \rightarrow 4} \frac{\sqrt{x}+\sqrt{8-x}}{2} \\
& =2
\end{aligned}
$$

(c) $\lim _{x \rightarrow \infty} \frac{2 \mathrm{e}^{3 x}-1}{1-\mathrm{e}^{x}-3 \mathrm{e}^{3 x}}$

Solution.

$$
\begin{aligned}
\lim _{x \rightarrow \infty} \frac{2 \mathrm{e}^{3 x}-1}{1-\mathrm{e}^{x}-3 \mathrm{e}^{3 x}} & =\lim _{x \rightarrow \infty} \frac{\mathrm{e}^{3 x}\left(2-\frac{1}{\mathrm{e}^{3 x}}\right)}{\mathrm{e}^{3 x}\left(\frac{1}{\mathrm{e}^{3 x}}-\frac{\mathrm{e}^{x}}{\mathrm{e}^{3 x}}-3\right)} \\
& =\lim _{x \rightarrow \infty} \frac{2-\frac{1}{\mathrm{e}^{3 x}}}{\frac{1}{\mathrm{e}^{3 x}}-\frac{1}{\mathrm{e}^{2 x}}-3} \\
& =-\frac{2}{3}
\end{aligned}
$$

(d) $\lim _{x \rightarrow 1^{+}} \frac{x+2}{x^{2}-1}$

Solution. Trying to evaluate, we get " $3 / 0$ ", so it is [again] some kind of infinite limit. On the left of 1 [i.e., for $x>1$ but close to 1] we have that both $x+2$ and $x^{2}-1$ are positive, so

$$
\lim _{x \rightarrow 1^{+}} \frac{x+2}{x^{2}-1}=+\infty
$$

3) [15 points] Give the equation of the line tangent to the graph of $f(x)=\cos (2 x)$ at $x=0$. [You cannot use any derivative formula we haven't seen in class yet!]

Solution. We have

$$
\begin{array}{rlr}
f^{\prime}(0) & =\lim _{h \rightarrow 0} \frac{f(0+h)-f(0)}{h} & \\
& =\lim _{h \rightarrow 0} \frac{\cos (2 h)-\cos (0)}{h} & \\
& =\lim _{h \rightarrow 0} \frac{\cos (2 h)-1}{h} & \\
& =\lim _{k \rightarrow 0} \frac{\cos (k)-1}{k / 2} & \text { [use subst. } k=2 h] \\
& =\lim _{k \rightarrow 0}\left(2 \cdot \frac{\cos (k)-1}{k}\right) & \\
& =2 \cdot 0=0 . &
\end{array}
$$

Now the equation of the tangent line at $x=c$ is

$$
y-f(c)=f^{\prime}(c)(x-c)
$$

so, in this case

$$
y-1=0 \cdot(x-0)
$$

or

$$
y=1
$$

4) [15 points] Let

$$
\lim _{x \rightarrow 1} f(x)=3, \quad \lim _{x \rightarrow 1} g(x)=-2, \quad \lim _{x \rightarrow 1} h(x)=+\infty
$$

Compute the following limits. [If a limit does not exist and is neither $+\infty$ nor $-\infty$, write DNE. You do not need to show work here.]
(a) $\lim _{x \rightarrow 1} f(x)-g(x)=3-(-2)=5$
(b) $\lim _{x \rightarrow 1} g(x) \cdot h(x)=-\infty$
(c) $\lim _{x \rightarrow 1} f(x) / h(x)=0$
(d) $\lim _{x \rightarrow 1} h(x) / g(x)=-\infty$
(e) $\lim _{x \rightarrow 1} \arctan (x-h(x))=-\pi / 2$
5) [15 points] Give a [finite] closed interval in which we have a solution to $3^{x}=x^{2}$. [Justify!]

Solution. We use the Intermediate Value Theorem.
Let $f(x)=3^{x}-x^{2}$. Then, [by trial an error], we have

$$
f(-1)=1 / 3-1=-2 / 3<0
$$

and

$$
f(0)=1-0=1>0 .
$$

Since $f(x)$ is continuous for all x [and so, in particular on $[-1,0]$], we have, by the Intermediate Value Theorem, that there is a $c \in[-1,0]$ such that $f(c)=0$, i.e., $3^{c}=c^{2}$. In other words, the equation has a solution [namely $x=c]$ in the closed interval $[-1,0]$.
6) [15 points] Let $f(x)$ be a function for which $f^{\prime}(-2)=2, f^{\prime}(0)=0$ and $f^{\prime}(2)=-1$. Mark the option below that could represent the graph of this function. [You do not have to justify, but in that case, we cannot give partial credit! If you do write an explanation for your choice, we can.]

(b)

(c)

(d)

(e) None of the above.

Solution. Only (b) and (c) have positive slope [i.e., increasing] at $x=-2$, slope zero [i.e., horizontal] at $x=0$ and negative slope [i.e., decreasing] at $x=2$. But (b) has a small [i.e., close to zero] slope at $x=-2$, so different from 2 , and a very steep negative slope at $x=2$, so different from -1 . So, (c) is the correct answer.

