What's Calculus?

Answer:

What's Calculus?

Answer: Next semester!

What's Calculus?

Answer: Next semester! (Fundamental Theorem of Calculus, by Newton and Leibniz.)

What's Calculus?

Answer: Next semester! (Fundamental Theorem of Calculus, by Newton and Leibniz.)

Virtually all of modern science uses calculus!

What's Calculus?

Answer: Next semester! (Fundamental Theorem of Calculus, by Newton and Leibniz.)

Virtually all of modern science uses calculus! Physics, engineering, statistics, biology (modeling), etc.

What's Calculus?

Answer: Next semester! (Fundamental Theorem of Calculus, by Newton and Leibniz.)

Virtually all of modern science uses calculus! Physics, engineering, statistics, biology (modeling), etc.

This semester: Differential Calculus.

What's Calculus?

Answer: Next semester! (Fundamental Theorem of Calculus, by Newton and Leibniz.)

Virtually all of modern science uses calculus! Physics, engineering, statistics, biology (modeling), etc.

This semester: Differential Calculus. (Tangent lines.)

What's Calculus?

Answer: Next semester! (Fundamental Theorem of Calculus, by Newton and Leibniz.)

Virtually all of modern science uses calculus! Physics, engineering, statistics, biology (modeling), etc.

This semester: Differential Calculus. (Tangent lines.) Next semester: Integral Calculus.

What's Calculus?

Answer: Next semester! (Fundamental Theorem of Calculus, by Newton and Leibniz.)

Virtually all of modern science uses calculus! Physics, engineering, statistics, biology (modeling), etc.

This semester: Differential Calculus. (Tangent lines.) Next semester: Integral Calculus. (Areas.)

Areas

Computing areas is one the most classical problems in mathematics.

Areas

Computing areas is one the most classical problems in mathematics. (The term geometry comes from the Greek "land (or earth) measurement".)

Areas

Computing areas is one the most classical problems in mathematics. (The term geometry comes from the Greek "land (or earth) measurement".) The idea is to compare the space taken by a plane shape with the space taken by one square of side 1 .

Areas

Computing areas is one the most classical problems in mathematics. (The term geometry comes from the Greek "land (or earth) measurement".) The idea is to compare the space taken by a plane shape with the space taken by one square of side 1 .

- Area of rectangle: length of base times length of height.

Areas

Computing areas is one the most classical problems in mathematics. (The term geometry comes from the Greek "land (or earth) measurement".) The idea is to compare the space taken by a plane shape with the space taken by one square of side 1 .

- Area of rectangle: length of base times length of height.
- Area of triangle: half of the length of base times length of height.

Areas

Computing areas is one the most classical problems in mathematics. (The term geometry comes from the Greek "land (or earth) measurement".) The idea is to compare the space taken by a plane shape with the space taken by one square of side 1.

- Area of rectangle: length of base times length of height.
- Area of triangle: half of the length of base times length of height. (From this, we can get areas of polygons.)

Areas

Computing areas is one the most classical problems in mathematics. (The term geometry comes from the Greek "land (or earth) measurement".) The idea is to compare the space taken by a plane shape with the space taken by one square of side 1.

- Area of rectangle: length of base times length of height.
- Area of triangle: half of the length of base times length of height. (From this, we can get areas of polygons.)
- Area of Circle: π times the square of the radius.

Areas

Computing areas is one the most classical problems in mathematics. (The term geometry comes from the Greek "land (or earth) measurement".) The idea is to compare the space taken by a plane shape with the space taken by one square of side 1.

- Area of rectangle: length of base times length of height.
- Area of triangle: half of the length of base times length of height. (From this, we can get areas of polygons.)
- Area of Circle: π times the square of the radius. Why???? How did one find that out?

Other Areas

How about the area of an ellipse?

Other Areas

How about the area of an ellipse? Say $(x / 3)^{2}+(y / 2)^{2}=1$?

Other Areas

How about the area of an ellipse? Say $(x / 3)^{2}+(y / 2)^{2}=1$?

Other Areas

How about the area of an ellipse? Say $(x / 3)^{2}+(y / 2)^{2}=1$?

What's its area?

Other Areas

How about the area between a line and a parabola?

Other Areas

How about the area between a line and a parabola?

Other Areas

How about the area between a line and a parabola? How about two parabolas?

Other Areas

How about the area between a line and a parabola? How about two parabolas?

Other Areas

How about the area between a line and a parabola? How about two parabolas?

These are hard questions!

Other Areas

How about the area between a line and a parabola? How about two parabolas?

These are hard questions! Answers in Math 142.

Movement

Suppose that you know that a particle in moving along a straight line such that t seconds after we start observing the movement, the position of the particle is t^{2} meters from the original position.

Movement

Suppose that you know that a particle in moving along a straight line such that t seconds after we start observing the movement, the position of the particle is t^{2} meters from the original position. In other words, the position of the particle is given by the function $s(t)=t^{2}$.

Movement

Suppose that you know that a particle in moving along a straight line such that t seconds after we start observing the movement, the position of the particle is t^{2} meters from the original position. In other words, the position of the particle is given by the function $s(t)=t^{2}$.

Movement

Suppose that you know that a particle in moving along a straight line such that t seconds after we start observing the movement, the position of the particle is t^{2} meters from the original position. In other words, the position of the particle is given by the function $s(t)=t^{2}$.

Movement

Suppose that you know that a particle in moving along a straight line such that t seconds after we start observing the movement, the position of the particle is t^{2} meters from the original position. In other words, the position of the particle is given by the function $s(t)=t^{2}$.

Movement

Suppose that you know that a particle in moving along a straight line such that t seconds after we start observing the movement, the position of the particle is t^{2} meters from the original position. In other words, the position of the particle is given by the function $s(t)=t^{2}$.

Movement

Suppose that you know that a particle in moving along a straight line such that t seconds after we start observing the movement, the position of the particle is t^{2} meters from the original position. In other words, the position of the particle is given by the function $s(t)=t^{2}$.

Movement

Suppose that you know that a particle in moving along a straight line such that t seconds after we start observing the movement, the position of the particle is t^{2} meters from the original position. In other words, the position of the particle is given by the function $s(t)=t^{2}$.

Movement

Suppose that you know that a particle in moving along a straight line such that t seconds after we start observing the movement, the position of the particle is t^{2} meters from the original position. In other words, the position of the particle is given by the function $s(t)=t^{2}$.

Movement

Suppose that you know that a particle in moving along a straight line such that t seconds after we start observing the movement, the position of the particle is t^{2} meters from the original position. In other words, the position of the particle is given by the function $s(t)=t^{2}$.

Movement

Suppose that you know that a particle in moving along a straight line such that t seconds after we start observing the movement, the position of the particle is t^{2} meters from the original position. In other words, the position of the particle is given by the function $s(t)=t^{2}$.

One can clearly see that the particle is accelerating.

Average Speed

Since we know the position at any time, we should be able to find out everything about the movements of the particle!

Average Speed

Since we know the position at any time, we should be able to find out everything about the movements of the particle! (Not only its position at a given time.)

Average Speed

Since we know the position at any time, we should be able to find out everything about the movements of the particle! (Not only its position at a given time.)

For instance, we can find the average speed of the particle in a period.

Average Speed

Since we know the position at any time, we should be able to find out everything about the movements of the particle! (Not only its position at a given time.)

For instance, we can find the average speed of the particle in a period. For instance, the average speed between $t=1$ and $t=2$:

Average Speed

Since we know the position at any time, we should be able to find out everything about the movements of the particle! (Not only its position at a given time.)

For instance, we can find the average speed of the particle in a period. For instance, the average speed between $t=1$ and $t=2$:

$$
\frac{\Delta s}{\Delta t}=
$$

Average Speed

Since we know the position at any time, we should be able to find out everything about the movements of the particle! (Not only its position at a given time.)

For instance, we can find the average speed of the particle in a period. For instance, the average speed between $t=1$ and $t=2$:

$$
\frac{\Delta s}{\Delta t}=\frac{s(2)-s(1)}{2-1}=
$$

Average Speed

Since we know the position at any time, we should be able to find out everything about the movements of the particle! (Not only its position at a given time.)

For instance, we can find the average speed of the particle in a period. For instance, the average speed between $t=1$ and $t=2$:

$$
\frac{\Delta s}{\Delta t}=\frac{s(2)-s(1)}{2-1}=\frac{4-1}{2-1}=
$$

Average Speed

Since we know the position at any time, we should be able to find out everything about the movements of the particle! (Not only its position at a given time.)

For instance, we can find the average speed of the particle in a period. For instance, the average speed between $t=1$ and $t=2$:

$$
\frac{\Delta s}{\Delta t}=\frac{s(2)-s(1)}{2-1}=\frac{4-1}{2-1}=3 .
$$

Average Speed

Since we know the position at any time, we should be able to find out everything about the movements of the particle! (Not only its position at a given time.)

For instance, we can find the average speed of the particle in a period. For instance, the average speed between $t=1$ and $t=2$:

$$
\frac{\Delta s}{\Delta t}=\frac{s(2)-s(1)}{2-1}=\frac{4-1}{2-1}=3 .
$$

Between $t=2$ and $t=3$:

Average Speed

Since we know the position at any time, we should be able to find out everything about the movements of the particle! (Not only its position at a given time.)

For instance, we can find the average speed of the particle in a period. For instance, the average speed between $t=1$ and $t=2$:

$$
\frac{\Delta s}{\Delta t}=\frac{s(2)-s(1)}{2-1}=\frac{4-1}{2-1}=3 .
$$

Between $t=2$ and $t=3$:

$$
\frac{\Delta s}{\Delta t}=
$$

Average Speed

Since we know the position at any time, we should be able to find out everything about the movements of the particle! (Not only its position at a given time.)

For instance, we can find the average speed of the particle in a period. For instance, the average speed between $t=1$ and $t=2$:

$$
\frac{\Delta s}{\Delta t}=\frac{s(2)-s(1)}{2-1}=\frac{4-1}{2-1}=3 .
$$

Between $t=2$ and $t=3$:

$$
\frac{\Delta s}{\Delta t}=\frac{s(3)-s(2)}{3-2}=
$$

Average Speed

Since we know the position at any time, we should be able to find out everything about the movements of the particle! (Not only its position at a given time.)

For instance, we can find the average speed of the particle in a period. For instance, the average speed between $t=1$ and $t=2$:

$$
\frac{\Delta s}{\Delta t}=\frac{s(2)-s(1)}{2-1}=\frac{4-1}{2-1}=3 .
$$

Between $t=2$ and $t=3$:

$$
\frac{\Delta s}{\Delta t}=\frac{s(3)-s(2)}{3-2}=\frac{9-4}{3-2}=
$$

Average Speed

Since we know the position at any time, we should be able to find out everything about the movements of the particle! (Not only its position at a given time.)

For instance, we can find the average speed of the particle in a period. For instance, the average speed between $t=1$ and $t=2$:

$$
\frac{\Delta s}{\Delta t}=\frac{s(2)-s(1)}{2-1}=\frac{4-1}{2-1}=3 .
$$

Between $t=2$ and $t=3$:

$$
\frac{\Delta s}{\Delta t}=\frac{s(3)-s(2)}{3-2}=\frac{9-4}{3-2}=5 .
$$

Instantaneous Speed

But how about the instantaneous speed at, say $t=2$.

Instantaneous Speed

But how about the instantaneous speed at, say $t=2$. (What is the speedometer showing if we look at it at $t=2$?)

Instantaneous Speed

But how about the instantaneous speed at, say $t=2$. (What is the speedometer showing if we look at it at $t=2$?) Much harder!

Instantaneous Speed

But how about the instantaneous speed at, say $t=2$. (What is the speedometer showing if we look at it at $t=2$?) Much harder! Idea: I might not be able to know the exact speed, but I can get a very good idea:

Instantaneous Speed

But how about the instantaneous speed at, say $t=2$. (What is the speedometer showing if we look at it at $t=2$?) Much harder! Idea: I might not be able to know the exact speed, but I can get a very good idea: find the average speed of a tiny interval starting at $t=2$.

Instantaneous Speed

But how about the instantaneous speed at, say $t=2$. (What is the speedometer showing if we look at it at $t=2$?) Much harder! Idea: I might not be able to know the exact speed, but I can get a very good idea: find the average speed of a tiny interval starting at $t=2$. The smaller the interval is, the less time the particle had to change its speed,

Instantaneous Speed

But how about the instantaneous speed at, say $t=2$. (What is the speedometer showing if we look at it at $t=2$?) Much harder! Idea: I might not be able to know the exact speed, but I can get a very good idea: find the average speed of a tiny interval starting at $t=2$. The smaller the interval is, the less time the particle had to change its speed, so the closest we get to the real speed at $t=2$!

Instantaneous Speed

But how about the instantaneous speed at, say $t=2$. (What is the speedometer showing if we look at it at $t=2$?) Much harder! Idea: I might not be able to know the exact speed, but I can get a very good idea: find the average speed of a tiny interval starting at $t=2$. The smaller the interval is, the less time the particle had to change its speed, so the closest we get to the real speed at $t=2$! So, we find the average speed between $t=2$ and $t=2+\Delta t$, for Δt small.

Instantaneous Speed

But how about the instantaneous speed at, say $t=2$. (What is the speedometer showing if we look at it at $t=2$?) Much harder! Idea: I might not be able to know the exact speed, but I can get a very good idea: find the average speed of a tiny interval starting at $t=2$. The smaller the interval is, the less time the particle had to change its speed, so the closest we get to the real speed at $t=2$! So, we find the average speed between $t=2$ and $t=2+\Delta t$, for Δt small. Here are some computations:

Instantaneous Speed

But how about the instantaneous speed at, say $t=2$. (What is the speedometer showing if we look at it at $t=2$?) Much harder! Idea: I might not be able to know the exact speed, but I can get a very good idea: find the average speed of a tiny interval starting at $t=2$. The smaller the interval is, the less time the particle had to change its speed, so the closest we get to the real speed at $t=2$! So, we find the average speed between $t=2$ and $t=2+\Delta t$, for Δt small. Here are some computations:

Instantaneous Speed

But how about the instantaneous speed at, say $t=2$. (What is the speedometer showing if we look at it at $t=2$?) Much harder! Idea: I might not be able to know the exact speed, but I can get a very good idea: find the average speed of a tiny interval starting at $t=2$. The smaller the interval is, the less time the particle had to change its speed, so the closest we get to the real speed at $t=2$! So, we find the average speed between $t=2$ and $t=2+\Delta t$, for Δt small. Here are some computations:

Instantaneous Speed

But how about the instantaneous speed at, say $t=2$. (What is the speedometer showing if we look at it at $t=2$?) Much harder! Idea: I might not be able to know the exact speed, but I can get a very good idea: find the average speed of a tiny interval starting at $t=2$. The smaller the interval is, the less time the particle had to change its speed, so the closest we get to the real speed at $t=2$! So, we find the average speed between $t=2$ and $t=2+\Delta t$, for Δt small. Here are some computations:

Δt	Aver. Sp.
0.1	4.1
0.01	4.01

Instantaneous Speed

But how about the instantaneous speed at, say $t=2$. (What is the speedometer showing if we look at it at $t=2$?) Much harder! Idea: I might not be able to know the exact speed, but I can get a very good idea: find the average speed of a tiny interval starting at $t=2$. The smaller the interval is, the less time the particle had to change its speed, so the closest we get to the real speed at $t=2$! So, we find the average speed between $t=2$ and $t=2+\Delta t$, for Δt small. Here are some computations:

Δt	Aver. Sp.
0.1	4.1
0.01	4.01
0.001	4.001

Instantaneous Speed

But how about the instantaneous speed at, say $t=2$. (What is the speedometer showing if we look at it at $t=2$?) Much harder! Idea: I might not be able to know the exact speed, but I can get a very good idea: find the average speed of a tiny interval starting at $t=2$. The smaller the interval is, the less time the particle had to change its speed, so the closest we get to the real speed at $t=2$! So, we find the average speed between $t=2$ and $t=2+\Delta t$, for Δt small. Here are some computations:

Δt	Aver. Sp.
0.1	4.1
0.01	4.01
0.001	4.001
0.0001	4.0001

Instantaneous Speed

But how about the instantaneous speed at, say $t=2$. (What is the speedometer showing if we look at it at $t=2$?) Much harder! Idea: I might not be able to know the exact speed, but I can get a very good idea: find the average speed of a tiny interval starting at $t=2$. The smaller the interval is, the less time the particle had to change its speed, so the closest we get to the real speed at $t=2$! So, we find the average speed between $t=2$ and $t=2+\Delta t$, for Δt small. Here are some computations:

Δt	Aver. Sp.
0.1	4.1
0.01	4.01
0.001	4.001
0.0001	4.0001

So, the speed at $t=2$ is pretty close to 4.0001 .

Instantaneous Speed

But how about the instantaneous speed at, say $t=2$. (What is the speedometer showing if we look at it at $t=2$?) Much harder! Idea: I might not be able to know the exact speed, but I can get a very good idea: find the average speed of a tiny interval starting at $t=2$. The smaller the interval is, the less time the particle had to change its speed, so the closest we get to the real speed at $t=2$! So, we find the average speed between $t=2$ and $t=2+\Delta t$, for Δt small. Here are some computations:

Δt	Aver. Sp.
0.1	4.1
0.01	4.01
0.001	4.001
0.0001	4.0001

So, the speed at $t=2$ is pretty close to 4.0001 . (Is it 4?)

Computing Average Speeds

The computations done for the average speed on the previous slide can be done quite quickly by a computer (or even calculator).

Computing Average Speeds

The computations done for the average speed on the previous slide can be done quite quickly by a computer (or even calculator). But imagine for a second we have to compute lots of different average speeds by hand!

Computing Average Speeds

The computations done for the average speed on the previous slide can be done quite quickly by a computer (or even calculator). But imagine for a second we have to compute lots of different average speeds by hand!
Here is a smart way of doing it:

Computing Average Speeds

The computations done for the average speed on the previous slide can be done quite quickly by a computer (or even calculator). But imagine for a second we have to compute lots of different average speeds by hand!
Here is a smart way of doing it: find a formula for the average
speed! The average speed between $t=t_{0}$ and $t=t_{0}+\Delta t$ is:

Computing Average Speeds

The computations done for the average speed on the previous slide can be done quite quickly by a computer (or even calculator). But imagine for a second we have to compute lots of different average speeds by hand!
Here is a smart way of doing it: find a formula for the average speed! The average speed between $t=t_{0}$ and $t=t_{0}+\Delta t$ is:
$\frac{\Delta s}{\Delta t}$

Computing Average Speeds

The computations done for the average speed on the previous slide can be done quite quickly by a computer (or even calculator). But imagine for a second we have to compute lots of different average speeds by hand!
Here is a smart way of doing it: find a formula for the average
speed! The average speed between $t=t_{0}$ and $t=t_{0}+\Delta t$ is:

$$
\frac{\Delta s}{\Delta t}=\frac{s\left(t_{0}+\Delta t\right)-s\left(t_{0}\right)}{\left(t_{0}+\Delta t\right)-t_{0}}
$$

Computing Average Speeds

The computations done for the average speed on the previous slide can be done quite quickly by a computer (or even calculator). But imagine for a second we have to compute lots of different average speeds by hand!
Here is a smart way of doing it: find a formula for the average
speed! The average speed between $t=t_{0}$ and $t=t_{0}+\Delta t$ is:

$$
\frac{\Delta s}{\Delta t}=\frac{s\left(t_{0}+\Delta t\right)-s\left(t_{0}\right)}{\left(t_{0}+\Delta t\right)-t_{0}}=\frac{\left(t_{0}+\Delta t\right)^{2}-t_{0}^{2}}{\Delta t}
$$

Computing Average Speeds

The computations done for the average speed on the previous slide can be done quite quickly by a computer (or even calculator). But imagine for a second we have to compute lots of different average speeds by hand!
Here is a smart way of doing it: find a formula for the average
speed! The average speed between $t=t_{0}$ and $t=t_{0}+\Delta t$ is:

$$
\begin{aligned}
\frac{\Delta s}{\Delta t} & =\frac{s\left(t_{0}+\Delta t\right)-s\left(t_{0}\right)}{\left(t_{0}+\Delta t\right)-t_{0}}=\frac{\left(t_{0}+\Delta t\right)^{2}-t_{0}^{2}}{\Delta t} \\
& =\frac{\left(t_{0}^{2}+2 t_{0} \Delta t+(\Delta t)^{2}\right)-t_{0}^{2}}{\Delta t}
\end{aligned}
$$

Computing Average Speeds

The computations done for the average speed on the previous slide can be done quite quickly by a computer (or even calculator). But imagine for a second we have to compute lots of different average speeds by hand!
Here is a smart way of doing it: find a formula for the average
speed! The average speed between $t=t_{0}$ and $t=t_{0}+\Delta t$ is:

$$
\begin{aligned}
\frac{\Delta s}{\Delta t} & =\frac{s\left(t_{0}+\Delta t\right)-s\left(t_{0}\right)}{\left(t_{0}+\Delta t\right)-t_{0}}=\frac{\left(t_{0}+\Delta t\right)^{2}-t_{0}^{2}}{\Delta t} \\
& =\frac{\left(t_{0}^{2}+2 t_{0} \Delta t+(\Delta t)^{2}\right)-t_{0}^{2}}{\Delta t} \\
& =\frac{2 t_{0} \Delta t+(\Delta t)^{2}}{\Delta t}
\end{aligned}
$$

Computing Average Speeds

The computations done for the average speed on the previous slide can be done quite quickly by a computer (or even calculator). But imagine for a second we have to compute lots of different average speeds by hand!
Here is a smart way of doing it: find a formula for the average
speed! The average speed between $t=t_{0}$ and $t=t_{0}+\Delta t$ is:

$$
\begin{aligned}
\frac{\Delta s}{\Delta t} & =\frac{s\left(t_{0}+\Delta t\right)-s\left(t_{0}\right)}{\left(t_{0}+\Delta t\right)-t_{0}}=\frac{\left(t_{0}+\Delta t\right)^{2}-t_{0}^{2}}{\Delta t} \\
& =\frac{\left(t_{0}^{2}+2 t_{0} \Delta t+(\Delta t)^{2}\right)-t_{0}^{2}}{\Delta t} \\
& =\frac{2 t_{0} \Delta t+(\Delta t)^{2}}{\Delta t}=\frac{2 t_{0} \Delta t+(\Delta t)^{\not 2}}{\Delta t}
\end{aligned}
$$

Computing Average Speeds

The computations done for the average speed on the previous slide can be done quite quickly by a computer (or even calculator). But imagine for a second we have to compute lots of different average speeds by hand!
Here is a smart way of doing it: find a formula for the average
speed! The average speed between $t=t_{0}$ and $t=t_{0}+\Delta t$ is:

$$
\begin{aligned}
\frac{\Delta s}{\Delta t} & =\frac{s\left(t_{0}+\Delta t\right)-s\left(t_{0}\right)}{\left(t_{0}+\Delta t\right)-t_{0}}=\frac{\left(t_{0}+\Delta t\right)^{2}-t_{0}^{2}}{\Delta t} \\
& =\frac{\left(t_{0}^{2}+2 t_{0} \Delta t+(\Delta t)^{2}\right)-t_{0}^{2}}{\Delta t} \\
& =\frac{2 t_{0} \Delta t+(\Delta t)^{2}}{\Delta t}=\frac{2 t_{0} \Delta t+(\Delta t)^{2 x}}{\Delta t} \\
& =2 t_{0}+\Delta t .
\end{aligned}
$$

Computing Average Speeds

This makes it easy to compute average speeds and estimate instantaneous speeds:

Computing Average Speeds

This makes it easy to compute average speeds and estimate instantaneous speeds:

t_{0}	Δt	Aver. Sp.

Computing Average Speeds

This makes it easy to compute average speeds and estimate instantaneous speeds:

t_{0}	Δt	Aver. Sp.
1	2	4

Computing Average Speeds

This makes it easy to compute average speeds and estimate instantaneous speeds:

t_{0}	Δt	Aver. Sp.
1	2	4
2.5	0.01	5.01

Computing Average Speeds

This makes it easy to compute average speeds and estimate instantaneous speeds:

t_{0}	Δt	Aver. Sp.
1	2	4
2.5	0.01	5.01
3	0.01	6.01

Computing Average Speeds

This makes it easy to compute average speeds and estimate instantaneous speeds:

t_{0}	Δt	Aver. Sp.
1	2	4
2.5	0.01	5.01
3	0.01	6.01
4	0.01	8.01

Computing Average Speeds

This makes it easy to compute average speeds and estimate instantaneous speeds:

t_{0}	Δt	Aver. Sp.
1	2	4
2.5	0.01	5.01
3	0.01	6.01
4	0.01	8.01

In particular, the instantaneous speed at $t=2.5$ is approximately 5.01,

Computing Average Speeds

This makes it easy to compute average speeds and estimate instantaneous speeds:

t_{0}	Δt	Aver. Sp.
1	2	4
2.5	0.01	5.01
3	0.01	6.01
4	0.01	8.01

In particular, the instantaneous speed at $t=2.5$ is approximately 5.01, the instantaneous speed at $t=3$ is approximately 6.01 ,

Computing Average Speeds

This makes it easy to compute average speeds and estimate instantaneous speeds:

t_{0}	Δt	Aver. Sp.
1	2	4
2.5	0.01	5.01
3	0.01	6.01
4	0.01	8.01

In particular, the instantaneous speed at $t=2.5$ is approximately 5.01, the instantaneous speed at $t=3$ is approximately 6.01 , the instantaneous speed at $t=4$ is approximately 8.01.

Instantaneous Speed

But how do we find the exact instantaneous speed?

Instantaneous Speed

But how do we find the exact instantaneous speed? The idea is that we want $\Delta t=0$.

Instantaneous Speed

But how do we find the exact instantaneous speed? The idea is that we want $\Delta t=0$. But this doesn't seem to make sense:

Instantaneous Speed

But how do we find the exact instantaneous speed? The idea is that we want $\Delta t=0$. But this doesn't seem to make sense:

$$
\frac{\Delta s}{\Delta t}=
$$

Instantaneous Speed

But how do we find the exact instantaneous speed? The idea is that we want $\Delta t=0$. But this doesn't seem to make sense:

$$
\frac{\Delta s}{\Delta t}=\frac{s\left(t_{0}+0\right)-s\left(t_{0}\right)}{\left(t_{0}+0\right)-t_{0}}=
$$

Instantaneous Speed

But how do we find the exact instantaneous speed? The idea is that we want $\Delta t=0$. But this doesn't seem to make sense:

$$
\frac{\Delta s}{\Delta t}=\frac{s\left(t_{0}+0\right)-s\left(t_{0}\right)}{\left(t_{0}+0\right)-t_{0}}=\frac{s\left(t_{0}\right)-s\left(t_{0}\right)}{t_{0}-t_{0}}=
$$

Instantaneous Speed

But how do we find the exact instantaneous speed? The idea is that we want $\Delta t=0$. But this doesn't seem to make sense:

$$
\frac{\Delta s}{\Delta t}=\frac{s\left(t_{0}+0\right)-s\left(t_{0}\right)}{\left(t_{0}+0\right)-t_{0}}=\frac{s\left(t_{0}\right)-s\left(t_{0}\right)}{t_{0}-t_{0}}=\frac{0}{0}!
$$

Instantaneous Speed

But how do we find the exact instantaneous speed? The idea is that we want $\Delta t=0$. But this doesn't seem to make sense:

$$
\frac{\Delta s}{\Delta t}=\frac{s\left(t_{0}+0\right)-s\left(t_{0}\right)}{\left(t_{0}+0\right)-t_{0}}=\frac{s\left(t_{0}\right)-s\left(t_{0}\right)}{t_{0}-t_{0}}=\frac{0}{0}!
$$

But we cannot divide by 0 !

Instantaneous Speed

But how do we find the exact instantaneous speed? The idea is that we want $\Delta t=0$. But this doesn't seem to make sense:

$$
\frac{\Delta s}{\Delta t}=\frac{s\left(t_{0}+0\right)-s\left(t_{0}\right)}{\left(t_{0}+0\right)-t_{0}}=\frac{s\left(t_{0}\right)-s\left(t_{0}\right)}{t_{0}-t_{0}}=\frac{0}{0}!
$$

But we cannot divide by 0 !

On the other hand, we have a formula for the average speed $\Delta s / \Delta t: 2 t_{0}+\Delta t$.

Instantaneous Speed

But how do we find the exact instantaneous speed? The idea is that we want $\Delta t=0$. But this doesn't seem to make sense:

$$
\frac{\Delta s}{\Delta t}=\frac{s\left(t_{0}+0\right)-s\left(t_{0}\right)}{\left(t_{0}+0\right)-t_{0}}=\frac{s\left(t_{0}\right)-s\left(t_{0}\right)}{t_{0}-t_{0}}=\frac{0}{0}!
$$

But we cannot divide by 0 !

On the other hand, we have a formula for the average speed $\Delta s / \Delta t: 2 t_{0}+\Delta t$. So, here, we can make $\Delta t=0$ without dividing by 0 !

Instantaneous Speed

But how do we find the exact instantaneous speed? The idea is that we want $\Delta t=0$. But this doesn't seem to make sense:

$$
\frac{\Delta s}{\Delta t}=\frac{s\left(t_{0}+0\right)-s\left(t_{0}\right)}{\left(t_{0}+0\right)-t_{0}}=\frac{s\left(t_{0}\right)-s\left(t_{0}\right)}{t_{0}-t_{0}}=\frac{0}{0}!
$$

But we cannot divide by 0 !

On the other hand, we have a formula for the average speed $\Delta s / \Delta t: 2 t_{0}+\Delta t$. So, here, we can make $\Delta t=0$ without dividing by 0 ! Hence, the instantaneous speed of the particle at $t=t_{0}$ is $2 t_{0}$.

Instantaneous Speed

But how do we find the exact instantaneous speed? The idea is that we want $\Delta t=0$. But this doesn't seem to make sense:

$$
\frac{\Delta s}{\Delta t}=\frac{s\left(t_{0}+0\right)-s\left(t_{0}\right)}{\left(t_{0}+0\right)-t_{0}}=\frac{s\left(t_{0}\right)-s\left(t_{0}\right)}{t_{0}-t_{0}}=\frac{0}{0}!
$$

But we cannot divide by 0 !

On the other hand, we have a formula for the average speed $\Delta s / \Delta t: 2 t_{0}+\Delta t$. So, here, we can make $\Delta t=0$ without dividing by 0 ! Hence, the instantaneous speed of the particle at $t=t_{0}$ is $2 t_{0}$.

So, the (instantaneous) speed at $t=2$ is 4 ,

Instantaneous Speed

But how do we find the exact instantaneous speed? The idea is that we want $\Delta t=0$. But this doesn't seem to make sense:

$$
\frac{\Delta s}{\Delta t}=\frac{s\left(t_{0}+0\right)-s\left(t_{0}\right)}{\left(t_{0}+0\right)-t_{0}}=\frac{s\left(t_{0}\right)-s\left(t_{0}\right)}{t_{0}-t_{0}}=\frac{0}{0}!
$$

But we cannot divide by 0 !

On the other hand, we have a formula for the average speed $\Delta s / \Delta t: 2 t_{0}+\Delta t$. So, here, we can make $\Delta t=0$ without dividing by 0 ! Hence, the instantaneous speed of the particle at $t=t_{0}$ is $2 t_{0}$.

So, the (instantaneous) speed at $t=2$ is 4 , the (instantaneous) speed at $t=3$ is 6 ,

Instantaneous Speed

But how do we find the exact instantaneous speed? The idea is that we want $\Delta t=0$. But this doesn't seem to make sense:

$$
\frac{\Delta s}{\Delta t}=\frac{s\left(t_{0}+0\right)-s\left(t_{0}\right)}{\left(t_{0}+0\right)-t_{0}}=\frac{s\left(t_{0}\right)-s\left(t_{0}\right)}{t_{0}-t_{0}}=\frac{0}{0}!
$$

But we cannot divide by 0 !

On the other hand, we have a formula for the average speed $\Delta s / \Delta t: 2 t_{0}+\Delta t$. So, here, we can make $\Delta t=0$ without dividing by 0 ! Hence, the instantaneous speed of the particle at $t=t_{0}$ is $2 t_{0}$.

So, the (instantaneous) speed at $t=2$ is 4 , the (instantaneous) speed at $t=3$ is 6 , the (instantaneous) speed at $t=4$ is 8 ,

Instantaneous Speed

But how do we find the exact instantaneous speed? The idea is that we want $\Delta t=0$. But this doesn't seem to make sense:

$$
\frac{\Delta s}{\Delta t}=\frac{s\left(t_{0}+0\right)-s\left(t_{0}\right)}{\left(t_{0}+0\right)-t_{0}}=\frac{s\left(t_{0}\right)-s\left(t_{0}\right)}{t_{0}-t_{0}}=\frac{0}{0}!
$$

But we cannot divide by 0 !

On the other hand, we have a formula for the average speed $\Delta s / \Delta t: 2 t_{0}+\Delta t$. So, here, we can make $\Delta t=0$ without dividing by 0 ! Hence, the instantaneous speed of the particle at $t=t_{0}$ is $2 t_{0}$.

So, the (instantaneous) speed at $t=2$ is 4 , the (instantaneous) speed at $t=3$ is 6 , the (instantaneous) speed at $t=4$ is 8 , etc.

Geometrical Interpretation of Average Speed

Now let's look at the geometry of the average speed.

Geometrical Interpretation of Average Speed

Now let's look at the geometry of the average speed. The formula $\frac{\Delta s}{\Delta t}$ is basically a slope $\left(\frac{\Delta y}{\Delta x}\right)$.

Geometrical Interpretation of Average Speed

Now let's look at the geometry of the average speed. The formula $\frac{\Delta s}{\Delta t}$ is basically a slope $\left(\frac{\Delta y}{\Delta x}\right)$. The average speed between $t=t_{0}$ and $t=t_{0}+\Delta t$ is the slope of the line secant to the graph of $s(t)$ through $t=t_{0}$ and $t=t_{0}+\Delta t$.

Geometrical Interpretation of Average Speed

Now let's look at the geometry of the average speed. The formula $\frac{\Delta s}{\Delta t}$ is basically a slope $\left(\frac{\Delta y}{\Delta x}\right)$. The average speed between $t=t_{0}$ and $t=t_{0}+\Delta t$ is the slope of the line secant to the graph of $s(t)$ through $t=t_{0}$ and $t=t_{0}+\Delta t$.

Geometrical Interpretation of Average Speed

Now let's look at the geometry of the average speed. The formula $\frac{\Delta s}{\Delta t}$ is basically a slope $\left(\frac{\Delta y}{\Delta x}\right)$. The average speed between $t=t_{0}$ and $t=t_{0}+\Delta t$ is the slope of the line secant to the graph of $s(t)$ through $t=t_{0}$ and $t=t_{0}+\Delta t$.

Geometrical Interpretation of Average Speed

Now let's look at the geometry of the average speed. The formula $\frac{\Delta s}{\Delta t}$ is basically a slope $\left(\frac{\Delta y}{\Delta x}\right)$. The average speed between $t=t_{0}$ and $t=t_{0}+\Delta t$ is the slope of the line secant to the graph of $s(t)$ through $t=t_{0}$ and $t=t_{0}+\Delta t$.

Geometrical Interpretation of Average Speed

Now let's look at the geometry of the average speed. The formula $\frac{\Delta s}{\Delta t}$ is basically a slope $\left(\frac{\Delta y}{\Delta x}\right)$. The average speed between $t=t_{0}$ and $t=t_{0}+\Delta t$ is the slope of the line secant to the graph of $s(t)$ through $t=t_{0}$ and $t=t_{0}+\Delta t$.

Geometrical Interpretation of Average Speed

Now let's look at the geometry of the average speed. The formula $\frac{\Delta s}{\Delta t}$ is basically a slope $\left(\frac{\Delta y}{\Delta x}\right)$. The average speed between $t=t_{0}$ and $t=t_{0}+\Delta t$ is the slope of the line secant to the graph of $s(t)$ through $t=t_{0}$ and $t=t_{0}+\Delta t$.

Geometrical Interpretation of Instantaneous Speed

So, what is the geometrical interpretation of the instantaneous speed?

Geometrical Interpretation of Instantaneous Speed

So, what is the geometrical interpretation of the instantaneous speed? It is the slope of the tangent line at $t=t_{0}$!

Geometrical Interpretation of Instantaneous Speed

So, what is the geometrical interpretation of the instantaneous speed? It is the slope of the tangent line at $t=t_{0}$!

Geometrical Interpretation of Instantaneous Speed

So, what is the geometrical interpretation of the instantaneous speed? It is the slope of the tangent line at $t=t_{0}$!

Geometrical Interpretation of Instantaneous Speed

So, what is the geometrical interpretation of the instantaneous speed? It is the slope of the tangent line at $t=t_{0}$!

Geometrical Interpretation of Instantaneous Speed

So, what is the geometrical interpretation of the instantaneous speed? It is the slope of the tangent line at $t=t_{0}$!

Geometrical Interpretation of Instantaneous Speed

So, what is the geometrical interpretation of the instantaneous speed? It is the slope of the tangent line at $t=t_{0}$!

Geometrical Interpretation of Instantaneous Speed

So, what is the geometrical interpretation of the instantaneous speed? It is the slope of the tangent line at $t=t_{0}$!

Tangent Line

The tangent line is geometrically defined precisely as in the previous pictures:

Tangent Line

The tangent line is geometrically defined precisely as in the previous pictures: take secant lines and make the second point approach the first.

Tangent Line

The tangent line is geometrically defined precisely as in the previous pictures: take secant lines and make the second point approach the first.
Another way to see it:

Tangent Line

The tangent line is geometrically defined precisely as in the previous pictures: take secant lines and make the second point approach the first.
Another way to see it: if a curve is smooth (no sharp edge), by zooming in enough, it starts to look like a straight line.

Tangent Line

The tangent line is geometrically defined precisely as in the previous pictures: take secant lines and make the second point approach the first.
Another way to see it: if a curve is smooth (no sharp edge), by zooming in enough, it starts to look like a straight line. This straight line is the tangent line!

Tangent Line

The tangent line is geometrically defined precisely as in the previous pictures: take secant lines and make the second point approach the first.
Another way to see it: if a curve is smooth (no sharp edge), by zooming in enough, it starts to look like a straight line. This straight line is the tangent line! (A line which is not tangent makes an angle!)

Tangent Line

The tangent line is geometrically defined precisely as in the previous pictures: take secant lines and make the second point approach the first.
Another way to see it: if a curve is smooth (no sharp edge), by zooming in enough, it starts to look like a straight line. This straight line is the tangent line! (A line which is not tangent makes an angle!)

Tangent Line

The tangent line is geometrically defined precisely as in the previous pictures: take secant lines and make the second point approach the first.
Another way to see it: if a curve is smooth (no sharp edge), by zooming in enough, it starts to look like a straight line. This straight line is the tangent line! (A line which is not tangent makes an angle!)

Tangent Line

The tangent line is geometrically defined precisely as in the previous pictures: take secant lines and make the second point approach the first.
Another way to see it: if a curve is smooth (no sharp edge), by zooming in enough, it starts to look like a straight line. This straight line is the tangent line! (A line which is not tangent makes an angle!)

Tangent Line

The tangent line is geometrically defined precisely as in the previous pictures: take secant lines and make the second point approach the first.
Another way to see it: if a curve is smooth (no sharp edge), by zooming in enough, it starts to look like a straight line. This straight line is the tangent line! (A line which is not tangent makes an angle!)

Tangent Line

The tangent line is geometrically defined precisely as in the previous pictures: take secant lines and make the second point approach the first.
Another way to see it: if a curve is smooth (no sharp edge), by zooming in enough, it starts to look like a straight line. This straight line is the tangent line! (A line which is not tangent makes an angle!)

Tangent Line

The tangent line is geometrically defined precisely as in the previous pictures: take secant lines and make the second point approach the first.
Another way to see it: if a curve is smooth (no sharp edge), by zooming in enough, it starts to look like a straight line. This straight line is the tangent line! (A line which is not tangent makes an angle!)

Tangent Line

The tangent line is geometrically defined precisely as in the previous pictures: take secant lines and make the second point approach the first.
Another way to see it: if a curve is smooth (no sharp edge), by zooming in enough, it starts to look like a straight line. This straight line is the tangent line! (A line which is not tangent makes an angle!)

Tangent Line

The tangent line is geometrically defined precisely as in the previous pictures: take secant lines and make the second point approach the first.
Another way to see it: if a curve is smooth (no sharp edge), by zooming in enough, it starts to look like a straight line. This straight line is the tangent line! (A line which is not tangent makes an angle!)

Tangent Line

The tangent line is geometrically defined precisely as in the previous pictures: take secant lines and make the second point approach the first.
Another way to see it: if a curve is smooth (no sharp edge), by zooming in enough, it starts to look like a straight line. This straight line is the tangent line! (A line which is not tangent makes an angle!)

Tangent Line

The tangent line is geometrically defined precisely as in the previous pictures: take secant lines and make the second point approach the first.
Another way to see it: if a curve is smooth (no sharp edge), by zooming in enough, it starts to look like a straight line. This straight line is the tangent line! (A line which is not tangent makes an angle!)

Tangent Line

The tangent line is geometrically defined precisely as in the previous pictures: take secant lines and make the second point approach the first.
Another way to see it: if a curve is smooth (no sharp edge), by zooming in enough, it starts to look like a straight line. This straight line is the tangent line! (A line which is not tangent makes an angle!)
size: 0.0002×0.0001

Rates of Change

A bit of terminology:

Rates of Change

A bit of terminology: the rate of change of the position of a particle is its instantaneous speed.

Rates of Change

A bit of terminology: the rate of change of the position of a particle is its instantaneous speed. More precisely, it is how fast the position change when the time changes.

Rates of Change

A bit of terminology: the rate of change of the position of a particle is its instantaneous speed. More precisely, it is how fast the position change when the time changes.

As we've seen, the speed (i.e., rate of change) of the position $s(t)$ at $t=t_{0}$ is the slope of the tangent line to the graph $s=s(t)$ at $t=t_{0}$.

Rates of Change

A bit of terminology: the rate of change of the position of a particle is its instantaneous speed. More precisely, it is how fast the position change when the time changes.

As we've seen, the speed (i.e., rate of change) of the position $s(t)$ at $t=t_{0}$ is the slope of the tangent line to the graph $s=s(t)$ at $t=t_{0}$.

In general, the rate of change of a function $f(x)$ at $x=x_{0}$ is the slope of the tangent line to the graph $y=f(x)$ at $x=x_{0}$.

Rates of Change

A bit of terminology: the rate of change of the position of a particle is its instantaneous speed. More precisely, it is how fast the position change when the time changes.

As we've seen, the speed (i.e., rate of change) of the position $s(t)$ at $t=t_{0}$ is the slope of the tangent line to the graph $s=s(t)$ at $t=t_{0}$.

In general, the rate of change of a function $f(x)$ at $x=x_{0}$ is the slope of the tangent line to the graph $y=f(x)$ at $x=x_{0}$. This tells us how fast is the y value changing at $x=x_{0}$.

Computations

As we've seen, to compute rates of change (or slopes of the tangent line) of $y=f(x)$ at $x=0$, we do:

Computations

As we've seen, to compute rates of change (or slopes of the tangent line) of $y=f(x)$ at $x=0$, we do:

- Consider the ratio: $\frac{f\left(x_{0}+\Delta x\right)-f\left(x_{0}\right)}{\Delta x}$;

Computations

As we've seen, to compute rates of change (or slopes of the tangent line) of $y=f(x)$ at $x=0$, we do:

- Consider the ratio: $\frac{f\left(x_{0}+\Delta x\right)-f\left(x_{0}\right)}{\Delta x}$;
- simplify so that we don't have a Δx in the denominator;

Computations

As we've seen, to compute rates of change (or slopes of the tangent line) of $y=f(x)$ at $x=0$, we do:

- Consider the ratio: $\frac{f\left(x_{0}+\Delta x\right)-f\left(x_{0}\right)}{\Delta x}$;
- simplify so that we don't have a Δx in the denominator;
- replace Δx by 0 .

Example

Consider $f(x)=x^{2}-x$.

Example

Consider $f(x)=x^{2}-x$. What is the slope of the tangent line at $x=1$?

Example

Consider $f(x)=x^{2}-x$. What is the slope of the tangent line at $x=1$?

$$
\frac{f(1+\Delta x)-f(1)}{\Delta x}
$$

Example

Consider $f(x)=x^{2}-x$. What is the slope of the tangent line at $x=1$?

$$
\frac{f(1+\Delta x)-f(1)}{\Delta x}=\frac{\left[(1+\Delta x)^{2}-(1+\Delta x)\right]-\left(1^{2}-1\right)}{\Delta x}
$$

Example

Consider $f(x)=x^{2}-x$. What is the slope of the tangent line at $x=1$?

$$
\begin{aligned}
\frac{f(1+\Delta x)-f(1)}{\Delta x} & =\frac{\left[(1+\Delta x)^{2}-(1+\Delta x)\right]-\left(1^{2}-1\right)}{\Delta x} \\
& =\frac{\left[\left(1^{2}+2 \Delta x+(\Delta x)^{2}\right)-(1+\Delta x)\right]-0}{\Delta x}
\end{aligned}
$$

Example

Consider $f(x)=x^{2}-x$. What is the slope of the tangent line at $x=1$?

$$
\begin{aligned}
\frac{f(1+\Delta x)-f(1)}{\Delta x} & =\frac{\left[(1+\Delta x)^{2}-(1+\Delta x)\right]-\left(1^{2}-1\right)}{\Delta x} \\
& =\frac{\left[\left(1^{2}+2 \Delta x+(\Delta x)^{2}\right)-(1+\Delta x)\right]-0}{\Delta x} \\
& =\frac{\Delta x+(\Delta x)^{2}}{\Delta x}
\end{aligned}
$$

Example

Consider $f(x)=x^{2}-x$. What is the slope of the tangent line at $x=1$?

$$
\begin{aligned}
\frac{f(1+\Delta x)-f(1)}{\Delta x} & =\frac{\left[(1+\Delta x)^{2}-(1+\Delta x)\right]-\left(1^{2}-1\right)}{\Delta x} \\
& =\frac{\left[\left(1^{2}+2 \Delta x+(\Delta x)^{2}\right)-(1+\Delta x)\right]-0}{\Delta x} \\
& =\frac{\Delta x+(\Delta x)^{2}}{\Delta x} \\
& =1+\Delta x .
\end{aligned}
$$

Example

Consider $f(x)=x^{2}-x$. What is the slope of the tangent line at $x=1$?

$$
\begin{aligned}
\frac{f(1+\Delta x)-f(1)}{\Delta x} & =\frac{\left[(1+\Delta x)^{2}-(1+\Delta x)\right]-\left(1^{2}-1\right)}{\Delta x} \\
& =\frac{\left[\left(1^{2}+2 \Delta x+(\Delta x)^{2}\right)-(1+\Delta x)\right]-0}{\Delta x} \\
& =\frac{\Delta x+(\Delta x)^{2}}{\Delta x} \\
& =1+\Delta x .
\end{aligned}
$$

Example

Consider $f(x)=x^{2}-x$. What is the slope of the tangent line at $x=1$?

$$
\begin{aligned}
\frac{f(1+\Delta x)-f(1)}{\Delta x} & =\frac{\left[(1+\Delta x)^{2}-(1+\Delta x)\right]-\left(1^{2}-1\right)}{\Delta x} \\
& =\frac{\left[\left(1^{2}+2 \Delta x+(\Delta x)^{2}\right)-(1+\Delta x)\right]-0}{\Delta x} \\
& =\frac{\Delta x+(\Delta x)^{2}}{\Delta x} \\
& =1+\Delta x .
\end{aligned}
$$

Now, we can make $\Delta x=0$ in the above expression, obtaining the answer: 1.

Problems

There are two problems:

Problems

There are two problems: the above is not mathematically precise!

Problems

There are two problems: the above is not mathematically precise! It is a procedure, but does not define rate of change/slope of tangent line precisely.

Problems

There are two problems: the above is not mathematically precise! It is a procedure, but does not define rate of change/slope of tangent line precisely.

Also, does the procedure always work?

Problems

There are two problems: the above is not mathematically precise! It is a procedure, but does not define rate of change/slope of tangent line precisely.

Also, does the procedure always work? Consider the tangent line of $y=\sin (x)$ at $x=0$.

Problems

There are two problems: the above is not mathematically precise! It is a procedure, but does not define rate of change/slope of tangent line precisely.

Also, does the procedure always work? Consider the tangent line of $y=\sin (x)$ at $x=0$. How do you simplify

$$
\frac{\sin (0+\Delta x)-\sin (0)}{\Delta x}=\frac{\sin (\Delta x)}{\Delta x}
$$

to cancel out the Δx in the denominator

Problems

There are two problems: the above is not mathematically precise! It is a procedure, but does not define rate of change/slope of tangent line precisely.

Also, does the procedure always work? Consider the tangent line of $y=\sin (x)$ at $x=0$. How do you simplify

$$
\frac{\sin (0+\Delta x)-\sin (0)}{\Delta x}=\frac{\sin (\Delta x)}{\Delta x}
$$

to cancel out the Δx in the denominator (so that we can replace it by 0)?

Problems

There are two problems: the above is not mathematically precise! It is a procedure, but does not define rate of change/slope of tangent line precisely.

Also, does the procedure always work? Consider the tangent line of $y=\sin (x)$ at $x=0$. How do you simplify

$$
\frac{\sin (0+\Delta x)-\sin (0)}{\Delta x}=\frac{\sin (\Delta x)}{\Delta x}
$$

to cancel out the Δx in the denominator (so that we can replace it by 0)? Hard!

Problems

There are two problems: the above is not mathematically precise! It is a procedure, but does not define rate of change/slope of tangent line precisely.

Also, does the procedure always work? Consider the tangent line of $y=\sin (x)$ at $x=0$. How do you simplify

$$
\frac{\sin (0+\Delta x)-\sin (0)}{\Delta x}=\frac{\sin (\Delta x)}{\Delta x}
$$

to cancel out the Δx in the denominator (so that we can replace it by 0)? Hard!

We need the notion of limit!

