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Here is the definition of internal direct product from the text:

Definition 1. Let HiCG for i ∈ {1, . . . , n}. [Note that we require that Hi is normal!]

Then G is the internal direct product of the Hi’s if for any g ∈ G, ∃!hi ∈ Hi such that

g = h1 · h2 · · ·hn.

Here is the properties I gave to decide if a group is isomorphic to the (external)

direct product of a finite number of its subgroups:

Definition 2. Let Hi ≤ G for i ∈ {1, . . . , n}. Then the sets Hi satisfy the IDP

properties if:

(1) Hi CG, for all i;

(2) G = H1 · · ·Hn
def
= {h1 · · ·hn : hi ∈ Hi};

(3) if Ĥi
def
= H1 · · ·Hi−1 · Hi+1 · · ·Hn, then Hi ∩ Ĥi = {1}. [Note that if n = 2,

then Ĥ1 = H2 and Ĥ2 = H1.]

We will prove that the definitions are equivalent, i.e., G is the internal direct prod-

uct of the Hi’s if and only if the Hi’s satisfy the IDP properties. [This is Theorem 5

below.]

We need the following lemma.

Lemma 3. If Hi ≤ G for i ∈ {1, . . . , n} satisfy IDP properties, then hihj = hjhi for

all hi ∈ Hi and hj ∈ Hj with i 6= j.

Proof. Since h−1
i ∈ Hi CG, we have that hjh

−1
i h−1

j ∈ Hi. So, hi(hjh
−1
i h−1

j ) ∈ Hi.

Similarly, since hj ∈ Hj CG, we have that hihjh
−1
i ∈ Hj. So, (hihjh

−1
i )h−1

j ∈ Hj.

Thus, we have that hihjh
−1
i h−1

j ∈ Hi ∩Hj. But since i 6= j, we have that Hj ⊆ Ĥi,

and so Hi ∩Hj ⊆ Hi ∩ Ĥi. Moreover, by property (3), we have that Hi ∩ Ĥi = {1}.
Hence, hihjh

−1
i h−1

j ∈ Hi ∩Hj ⊆ Hi ∩ Ĥi = {1}, which implies that hihjh
−1
i h−1

j = 1,

i.e., hihj = hjhi. �
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We then have:

Theorem 4. Let H1, . . . , Hn ≤ G. Then, φ : H1 × · · · × Hn → G defined by

φ(h1, . . . , hn) = h1 · · ·hn is an isomorphism if and only if the Hi’s satisfy the IDP

properties.

Proof. [⇒:] Assume that φ [as in the statement] is an isomorphism. Let G̃
def
= H1 ×

· · · × Hn and H̃i
def
= {1} × · · · {1} × Hi × {1} × · · · × {1} ≤ G̃ [with Hi in the i-th

coordinate]. Then, clearly φ(H̃i) = Hi. Since H̃i C G̃ [easy exercise!], we have that

Hi CG, as φ is an isomorphism [by assumption]. [This was a problem in the exam.]

Thus, IDP property (1) is proved.

Since φ is an isomorphism [and hence onto] and φ(G̃) = H1 · · ·Hn [by definition of

φ and the product of groups], we have that G = H1 · · ·Hn, proving property (2).

Now, let ˆ̃Hi
def
= H1× · · · ×Hi−1×{1}×Hi+1× · · · ×Hn. Then, clearly φ( ˆ̃Hi) = Ĥi

[with Ĥi as in Definition 2] and H̃i ∩ ˆ̃Hi = {(1, . . . , 1)}. Thus,

{1} = φ({(1, . . . , 1)})

= φ(H̃i ∩ ˆ̃Hi) [as noted above]

= φ(H̃i) ∩ φ( ˆ̃Hi) [as φ is a bijection – this is a Math 300 exercise]

= Hi ∩ Ĥi [as noted above]

Hence, property (3) is also satisfied.

[⇐:] Assume now that the Hi’s satisfy the IDP property. Then, φ is a homomor-

phism by Lemma 3. It is onto by property (2) [as φ(H1 × · · · ×Hn) = H1 · · ·Hn by

definition of φ].

Now we show that φ is injective. Suppose that φ(h1, . . . , hn) = 1. This means that

h1 · · ·hn = 1, or h−1
1 = h2 · · ·hn. Since the left hand side is in H1 and the right hand

side is in Ĥ1, property (3) tells us that h1 = 1 and h2 · · ·hn = 1. Then, h−1
2 = h3 · · ·hn

and now the left hand side is in H2 and the right hand side is in Ĥ2. As before, we

obtain h2 = 1 and h3 · · ·hn = 1. Inductively, we obtain that hi = 1 for all i. Hence,

kerφ = {(1, . . . , 1)} and φ is injective. �
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Now, we can prove that equivalency of the Definitions 1 and 2:

Theorem 5. Let Hi C G for i ∈ {1, . . . , n}. [Note that we are already assuming

that the Hi’s are normal, since it is in the conditions of both definitions!] We have

that G is the internal direct product of the Hi if and only if the Hi’s satisfy the IDP

properties.

Proof. [⇒:] Assume that G is the internal direct product of the Hi’s. Clearly prop-

erties (1) and (2) of IDP are satisfied.

Now, let hi ∈ Hi ∩ Ĥi. Then, since hi ∈ Ĥi, we have, by definition, that

1 · · · 1 · hi · 1 · · · 1 = hi = x1 · · ·xi−1 · 1 · xi+1 · · ·xn,

where xj ∈ Hj. By the unique representation hypothesis, we have that hi = 1. Thus

Hi ∩ Ĥi = {1}, i.e., property (3) is also satisfied.

[⇐:] Assume now that the Hi’s satisfy the IDP properties. [By (1), we would then

get that the Hi’s are normal, but we are already assuming it here.] Then, by (2),

every element g ∈ G can be written as g = h1 · · ·hn with hi ∈ Hi. [We need to show

uniqueness.]

Now assume that

h1 · · ·hn = x1 · · ·xn, with hi, xi ∈ Hi.

Thus, with φ as in the statement of Theorem 4 [which we can use since are assuming

IDP properties], we have that

φ(h1, . . . , hn) = φ(x1, . . . , xn).

Since φ is an isomorphism [and hence one-to-one], we have that hi = xi for all i, and

hence the representation is unique. �

This gives us:

Corollary 6. G is the internal direct product of the subgroups Hi’s for i ∈ {1, . . . , n}
[and hence Hi CG by assumption!] if and only if φ : H1 × · · · ×Hn → G defined by

φ(h1, . . . , hn) = h1 · · ·hn is an isomorphism.
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Proof. By Theorem 4, we know that that Hi’s satisfying IDP is equivalent to φ [as in

the statement] being an isomorphism. Since the former is equivalent to G being the

internal direct product of the subgroups Hi’s [by Theorem 5], the result follows. �


