INTERNAL DIRECT PRODUCT

MATH 457

Here is the definition of internal direct product from the text:
Definition 1. Let $H_{i} \triangleleft G$ for $i \in\{1, \ldots, n\}$. [Note that we require that H_{i} is normal!] Then G is the internal direct product of the H_{i} 's if for any $g \in G, \exists!h_{i} \in H_{i}$ such that $g=h_{1} \cdot h_{2} \cdots h_{n}$.

Here is the properties I gave to decide if a group is isomorphic to the (external) direct product of a finite number of its subgroups:

Definition 2. Let $H_{i} \leq G$ for $i \in\{1, \ldots, n\}$. Then the sets H_{i} satisfy the IDP properties if:
(1) $H_{i} \triangleleft G$, for all i;
(2) $G=H_{1} \cdots H_{n} \stackrel{\text { def }}{=}\left\{h_{1} \cdots h_{n}: h_{i} \in H_{i}\right\}$;
(3) if $\hat{H}_{i} \stackrel{\text { def }}{=} H_{1} \cdots H_{i-1} \cdot H_{i+1} \cdots H_{n}$, then $H_{i} \cap \hat{H}_{i}=\{1\}$. [Note that if $n=2$, then $\hat{H}_{1}=H_{2}$ and $\hat{H}_{2}=H_{1}$.]

We will prove that the definitions are equivalent, i.e., G is the internal direct product of the H_{i} 's if and only if the H_{i} 's satisfy the IDP properties. [This is Theorem 5 below.]

We need the following lemma.
Lemma 3. If $H_{i} \leq G$ for $i \in\{1, \ldots, n\}$ satisfy IDP properties, then $h_{i} h_{j}=h_{j} h_{i}$ for all $h_{i} \in H_{i}$ and $h_{j} \in H_{j}$ with $i \neq j$.

Proof. Since $h_{i}^{-1} \in H_{i} \triangleleft G$, we have that $h_{j} h_{i}^{-1} h_{j}^{-1} \in H_{i}$. So, $h_{i}\left(h_{j} h_{i}^{-1} h_{j}^{-1}\right) \in H_{i}$.
Similarly, since $h_{j} \in H_{j} \triangleleft G$, we have that $h_{i} h_{j} h_{i}^{-1} \in H_{j}$. So, $\left(h_{i} h_{j} h_{i}^{-1}\right) h_{j}^{-1} \in H_{j}$.
Thus, we have that $h_{i} h_{j} h_{i}^{-1} h_{j}^{-1} \in H_{i} \cap H_{j}$. But since $i \neq j$, we have that $H_{j} \subseteq \hat{H}_{i}$, and so $H_{i} \cap H_{j} \subseteq H_{i} \cap \hat{H}_{i}$. Moreover, by property (3), we have that $H_{i} \cap \hat{H}_{i}=\{1\}$. Hence, $h_{i} h_{j} h_{i}^{-1} h_{j}^{-1} \in H_{i} \cap H_{j} \subseteq H_{i} \cap \hat{H}_{i}=\{1\}$, which implies that $h_{i} h_{j} h_{i}^{-1} h_{j}^{-1}=1$, i.e., $h_{i} h_{j}=h_{j} h_{i}$.

We then have:
Theorem 4. Let $H_{1}, \ldots, H_{n} \leq G$. Then, $\phi: H_{1} \times \cdots \times H_{n} \rightarrow G$ defined by $\phi\left(h_{1}, \ldots, h_{n}\right)=h_{1} \cdots h_{n}$ is an isomorphism if and only if the H_{i} 's satisfy the IDP properties.

Proof. [$\Rightarrow:$:] Assume that ϕ [as in the statement] is an isomorphism. Let $\tilde{G} \stackrel{\text { def }}{=} H_{1} \times$ $\cdots \times H_{n}$ and $\tilde{H}_{i} \stackrel{\text { def }}{=}\{1\} \times \cdots\{1\} \times H_{i} \times\{1\} \times \cdots \times\{1\} \leq \tilde{G}$ [with H_{i} in the i-th coordinate]. Then, clearly $\phi\left(\tilde{H}_{i}\right)=H_{i}$. Since $\tilde{H}_{i} \triangleleft \tilde{G}$ [easy exercise!], we have that $H_{i} \triangleleft G$, as ϕ is an isomorphism [by assumption]. [This was a problem in the exam.] Thus, IDP property (1) is proved.

Since ϕ is an isomorphism [and hence onto] and $\phi(\tilde{G})=H_{1} \cdots H_{n}$ [by definition of ϕ and the product of groups], we have that $G=H_{1} \cdots H_{n}$, proving property (2).

Now, let $\hat{\tilde{H}}_{i} \stackrel{\text { def }}{=} H_{1} \times \cdots \times H_{i-1} \times\{1\} \times H_{i+1} \times \cdots \times H_{n}$. Then, clearly $\phi\left(\hat{\tilde{H}}_{i}\right)=\hat{H}_{i}$ [with \hat{H}_{i} as in Definition 2] and $\tilde{H}_{i} \cap \hat{\tilde{H}}_{i}=\{(1, \ldots, 1)\}$. Thus,

$$
\begin{aligned}
\{1\} & =\phi(\{(1, \ldots, 1)\}) & & \\
& =\phi\left(\tilde{H}_{i} \cap \hat{\tilde{H}}_{i}\right) & & \text { [as noted above] } \\
& =\phi\left(\tilde{H}_{i}\right) \cap \phi\left(\hat{\tilde{H}}_{i}\right) & & {[\text { as } \phi \text { is a bijection }- \text { this is a Math } 300 \text { exercise }] } \\
& =H_{i} \cap \hat{H}_{i} & & \text { [as noted above] }
\end{aligned}
$$

Hence, property (3) is also satisfied.
[\Leftarrow :] Assume now that the H_{i} 's satisfy the IDP property. Then, ϕ is a homomorphism by Lemma 3. It is onto by property (2) [as $\phi\left(H_{1} \times \cdots \times H_{n}\right)=H_{1} \cdots H_{n}$ by definition of $\phi]$.

Now we show that ϕ is injective. Suppose that $\phi\left(h_{1}, \ldots, h_{n}\right)=1$. This means that $h_{1} \cdots h_{n}=1$, or $h_{1}^{-1}=h_{2} \cdots h_{n}$. Since the left hand side is in H_{1} and the right hand side is in \hat{H}_{1}, property (3) tells us that $h_{1}=1$ and $h_{2} \cdots h_{n}=1$. Then, $h_{2}^{-1}=h_{3} \cdots h_{n}$ and now the left hand side is in H_{2} and the right hand side is in \hat{H}_{2}. As before, we obtain $h_{2}=1$ and $h_{3} \cdots h_{n}=1$. Inductively, we obtain that $h_{i}=1$ for all i. Hence, $\operatorname{ker} \phi=\{(1, \ldots, 1)\}$ and ϕ is injective.

Now, we can prove that equivalency of the Definitions 1 and 2:
Theorem 5. Let $H_{i} \triangleleft G$ for $i \in\{1, \ldots, n\}$. [Note that we are already assuming that the H_{i} 's are normal, since it is in the conditions of both definitions!] We have that G is the internal direct product of the H_{i} if and only if the H_{i} 's satisfy the IDP properties.

Proof. [$\Rightarrow:$: Assume that G is the internal direct product of the H_{i} 's. Clearly properties (1) and (2) of IDP are satisfied.

Now, let $h_{i} \in H_{i} \cap \hat{H}_{i}$. Then, since $h_{i} \in \hat{H}_{i}$, we have, by definition, that

$$
1 \cdots 1 \cdot h_{i} \cdot 1 \cdots 1=h_{i}=x_{1} \cdots x_{i-1} \cdot 1 \cdot x_{i+1} \cdots x_{n}
$$

where $x_{j} \in H_{j}$. By the unique representation hypothesis, we have that $h_{i}=1$. Thus $H_{i} \cap \hat{H}_{i}=\{1\}$, i.e., property (3) is also satisfied.
[\Leftarrow :] Assume now that the H_{i} 's satisfy the IDP properties. [By (1), we would then get that the H_{i} 's are normal, but we are already assuming it here.] Then, by (2), every element $g \in G$ can be written as $g=h_{1} \cdots h_{n}$ with $h_{i} \in H_{i}$. [We need to show uniqueness.]

Now assume that

$$
h_{1} \cdots h_{n}=x_{1} \cdots x_{n}, \quad \text { with } h_{i}, x_{i} \in H_{i} .
$$

Thus, with ϕ as in the statement of Theorem 4 [which we can use since are assuming IDP properties], we have that

$$
\phi\left(h_{1}, \ldots, h_{n}\right)=\phi\left(x_{1}, \ldots, x_{n}\right) .
$$

Since ϕ is an isomorphism [and hence one-to-one], we have that $h_{i}=x_{i}$ for all i, and hence the representation is unique.

This gives us:
Corollary 6. G is the internal direct product of the subgroups H_{i} 's for $i \in\{1, \ldots, n\}$ [and hence $H_{i} \triangleleft G$ by assumption!] if and only if $\phi: H_{1} \times \cdots \times H_{n} \rightarrow G$ defined by $\phi\left(h_{1}, \ldots, h_{n}\right)=h_{1} \cdots h_{n}$ is an isomorphism.

Proof. By Theorem 4, we know that that H_{i} 's satisfying IDP is equivalent to ϕ [as in the statement] being an isomorphism. Since the former is equivalent to G being the internal direct product of the subgroups H_{i} 's [by Theorem 5], the result follows.

