Midterm 2 - Solutions

Definition: Let G be a finite Abelian group. Let $I(G)$ be the vector of invariant factors of G, i.e., $I(G)=\left(d_{1}, d_{2}, \ldots, d_{k}\right)$ if

$$
G \cong \mathbb{Z} / d_{1} \mathbb{Z} \oplus \mathbb{Z} / d_{2} \mathbb{Z} \oplus \cdots \oplus \mathbb{Z} / d_{k} \mathbb{Z}
$$

where $d_{i+1} \mid d_{i}$ for $i \in\{1, \ldots,(k-1)\}$.
Let also $E(I)$ be the vector of elementary divisors [with the order from class, as explained below], i.e., $E(I)=\left(q_{1}, q_{2}, \ldots, q_{l}\right)$ if

$$
G \cong \mathbb{Z} / q_{1} \mathbb{Z} \oplus \mathbb{Z} / q_{2} \mathbb{Z} \oplus \cdots \oplus \mathbb{Z} / q_{l} \mathbb{Z}
$$

where q_{i} is a power of a prime [not necessarily distinct], say $q_{i}=p_{i}^{r_{i}}, p_{i}$ prime, and if $i<j$ then either $p_{i}<p_{j}$ or we have both $p_{i}=p_{j}$ and $r_{i} \leq r_{j}$.
[Feel free to talk to me if this definition is not clear.]

1) [20 points] Let

$$
\begin{aligned}
& G_{1}=\mathbb{Z} / 2 \mathbb{Z} \oplus \mathbb{Z} / 2^{2} \mathbb{Z} \oplus \mathbb{Z} / 3 \mathbb{Z} \oplus \mathbb{Z} / 3 \mathbb{Z} \oplus \mathbb{Z} / 3^{2} \mathbb{Z} \oplus \mathbb{Z} / 5^{2} \mathbb{Z} \oplus \mathbb{Z} / 7 \mathbb{Z} \oplus \mathbb{Z} / 7^{2} \mathbb{Z} \\
& G_{2}=\mathbb{Z} /\left(2^{3} \cdot 3^{2} \cdot 5 \cdot 7^{2}\right) \mathbb{Z} \oplus \mathbb{Z} /\left(3^{2} \cdot 5 \cdot 7\right) \mathbb{Z} \\
& G_{3}=\mathbb{Z} / 2^{2} \mathbb{Z} \oplus \mathbb{Z} /\left(3 \cdot 5^{2} \cdot 7\right) \mathbb{Z} \oplus \mathbb{Z} /\left(2 \cdot 3^{2}\right) \mathbb{Z} \oplus \mathbb{Z} /\left(3 \cdot 7^{2}\right) \mathbb{Z}
\end{aligned}
$$

(a) Compute $E\left(G_{i}\right), I\left(G_{i}\right)$ for $i=1,2,3$.

Solution. We have:

$$
\begin{array}{ll}
I\left(G_{1}\right)=\left(2^{2} \cdot 3^{2} \cdot 5^{2} \cdot 7^{2}, 2 \cdot 3 \cdot 7,3\right) & E\left(G_{1}\right)=\left(2,2^{2}, 3,3,3^{2}, 5^{2} 7,7^{2}\right) \\
I\left(G_{2}\right)=\left(2^{3} \cdot 3^{2} \cdot 5 \cdot 7^{2}, 3^{2} \cdot 5 \cdot 7\right) & E\left(G_{2}\right)=\left(2^{3}, 3^{2}, 3^{2}, 5,5,7,7^{2}\right) \\
I\left(G_{3}\right)=\left(2^{2} \cdot 3^{2} \cdot 5^{2} \cdot 7^{2}, 2 \cdot 3 \cdot 7,3\right) & E\left(G_{3}\right)=\left(2,2^{2}, 3,3,3^{2}, 5^{2} 7,7^{2}\right)
\end{array}
$$

(b) Find all pairs $i, j \in\{1,2,3\}$ with $i<j$ such that $G_{i} \cong G_{j}$. [Justify!]

Solution. Since $G_{i} \cong G_{j}$ iff $I\left(G_{i}\right)=I\left(G_{j}\right)\left[\right.$ or $\left.E\left(G_{i}\right)=E\left(G_{j}\right)\right]$, from (a) we have that $G_{1} \cong G_{3}$ and no other pair.
(c) If $P_{7} \in \operatorname{Syl}_{7}\left(G_{2}\right)$, then what is P_{7} isomorphic to?

Solution. Since [from $E\left(G_{2}\right)$ in (a)]:

$$
G_{2} \cong \mathbb{Z} / 2^{3} \mathbb{Z} \oplus \mathbb{Z} / 3^{2} \mathbb{Z} \oplus \mathbb{Z} / 3^{2} \mathbb{Z} \oplus \mathbb{Z} / 5 \mathbb{Z} \oplus \mathbb{Z} / 5 \mathbb{Z} \oplus \mathbb{Z} / 7 \mathbb{Z} \oplus \mathbb{Z} / 7^{2} \mathbb{Z}
$$

we have

$$
P_{7} \cong \mathbb{Z} / 7 \mathbb{Z} \oplus \mathbb{Z} / 7^{2} \mathbb{Z}
$$

2) The exponent of a group G is the smallest positive integer k [if exists] such that $g^{k}=1$ for all $g \in G$. Prove that if G is a finite Abelian group, then its exponent [exists and] is d_{1}, where d_{1} is the first entry of $I(G)$. [So, with the additive notation, we need to prove that d_{1} is the smallest positive integer such that $d_{1} \cdot g=0$ for all $g \in G$.]

Proof. We have that

$$
G \cong \mathbb{Z} / d_{1} \mathbb{Z} \oplus \mathbb{Z} / d_{2} \mathbb{Z} \oplus \cdots \oplus \mathbb{Z} / d_{k} \mathbb{Z}
$$

where $d_{i+1} \mid d_{i}$ for $i \in\{1, \ldots,(k-1)\}$. We may assume that we actually have an equality [as order of elements is preserved by isomorphisms]. Let $g=\left(g_{1}, g_{2}, \ldots, g_{k}\right)$. Since $g_{i} \in \mathbb{Z} / d_{i} \mathbb{Z}$, we have that $d_{i} \cdot g_{i}=0$. Since d_{1} is a multiple of d_{i} [as $d_{i} \mid d_{1}$], we also have $d_{1} \cdot g_{i}=0$, and hence $d_{1} \cdot g=\left(d_{1} \cdot g_{1}, \ldots, d_{1} \cdot g_{k}\right)=(0, \ldots, 0)=0$. Hence, the exponent exists and if we denote it by e we have that $e \leq d_{1}$.

Now, on the other hand, we have that $e \cdot(1,0,0, \ldots, 0)=0$, and then $e=0$ in $\mathbb{Z} / d_{1} \mathbb{Z}$ and hence $d_{1} \mid e$. Thus, [since $e \leq d_{1}$] we have that $e=d_{1}$.
3) Let G be a finite Abelian group such that there is $H \leq G$ such that $H \neq\{0\}$ [using additive notation] and if $K \leq G$ then $H \leq K$.
(a) Prove that if such H exists, then G is cyclic of order power of a prime.

Proof. Consider the decomposition of G into its elementary factors. Suppose that there is more than one factor. Let $\mathbb{Z} / p^{r} \mathbb{Z}$ be the first and K be the direct sum of the remaining factors. [Since we are assuming there is more than one, we have that $K \neq\{0\}$.] Then, $G=\mathbb{Z} / p^{r} \mathbb{Z} \oplus K$. We have that $H_{1} \stackrel{\text { def }}{=} \mathbb{Z} / p^{r} \mathbb{Z} \oplus\{0\}$ and $H_{2} \stackrel{\text { def }}{=}\{0\} \oplus K$ are non-trivial subgroups of G, and hence $H \leq H_{1}, H_{2}$, i.e., $H \leq H_{1} \cap H_{2}=\{0\}$, which is a contradiction.

Thus, G has only one elementary factor, and hence it is cyclic of order power of a prime.
(b) Give an example of a non-Abelian group of finite order for which such H does exist. [Just give me G and H. No need to justify.]

Solution. We have that $H=\{1,-1\}$ is $G=Q_{8}$ works.
4) Let G be a group of order $3 \cdot 7 \cdot 11$.
(a) Prove that G has normal subgroup, say H, of order 77 .

Proof. From Theorem 7.3.10(c) we get that $n_{7}=n_{11}=1$. So, if P_{7} and P_{11} are Sylow 7 and 11-subgroups of G respectively, we have $P_{7}, P_{11} \triangleleft G$. Thus, we have that $H \stackrel{\text { def }}{=} P_{7} \cdot P_{11} \triangleleft G$. We just need to now prove that $|H|=77$: we have, by the Third Isomorphism Theorem, that $|H|=\left(\left|P_{7}\right| \cdot\left|P_{11}\right|\right) /\left|P_{7} \cap P_{11}\right|$. But since P_{7} and P_{11} have relatively prime orders, we must have that $P_{7} \cap P_{11}=\{1\}$, and hence $|H|=77$.
(b) Prove that if G does not have exactly 7 subgroups of order 3 , then G is cyclic.

Proof. From Theorem 7.3.10(c) we get $n_{3} \in\{1,7\}$. So, since $n_{3} \neq 7$, then $n_{3}=1$ and, as on (a), we have that if $P_{3} \in \operatorname{Syl}_{3}(G)$, then $P_{3} \triangleleft G$.
So, with the group H from (a), we have that $P_{3} \cdot H \triangleleft G$. By the Third Isomorphism Theorem, similarly as done above, we get that $\left|P_{3} \cdot H\right|=\left|P_{3}\right| \cdot|H|=3 \cdot 77=|G|$. Hence, $P_{3} \cdot H=G$. Since also $P_{3} \cap H=\{1\}$ and $P_{3}, H \triangleleft G$, we get that $G=P_{3} \times H$.
Now P_{3} is cyclic [prime order] and so is H [by Problem 7.3.5(c)]. But their orders are relatively prime, and hence $G=P_{3} \times H \cong \mathbb{Z} / 3 \mathbb{Z} \oplus \mathbb{Z} / 77 \mathbb{Z}$ is cyclic. [One can see that, for instance, from the fact that $I(G)=(3 \cdot 7 \cdot 11)$.
5) Let p and q be distinct primes and let G be a group of order $|G|=p^{2} q$. Prove that G has either a normal Sylow p-subgroup or a normal Sylow q-subgroup.
[Hint: This is about sizes and counting. To derive a contradiction, assume there is neither. Use the Sylow Theorems to get that $q>p$. Then, what are n_{p} and n_{q} ?]

Proof. By Theorem 7.3.10(c), we have $n_{p} \in\{1, q\}$ and $n_{q} \in\left\{1, p, p^{2}\right\}$. Assume that there is no normal Sylow p or q-subgroup. Then, $n_{p} \neq 1$ [and thus $n_{p}=q$] and $n_{q} \neq 1$ [and thus n_{q} is p or $\left.p^{2}\right]$.

Since $n_{p}=q>1$, we have that $q \equiv 1(\bmod p)$ [by Theorem 7.3.10(c) again], and hence $q>p$. But this means that $p \not \equiv 1(\bmod q)$, and so $n_{q}=p^{2}$.

Now we count elements. We have $n_{q}=p^{2}$ subgroups of order q. Since these have prime order, they don't intersect except at the identity. This gives us $p^{2}(q-1)=p^{2} q-p^{2}$ elements of order q [$q-1$ for each Sylow q-subgroup].

Now we have at least 2 Sylow p-subgroups of order p^{2}. One of them gives me p^{2} elements, which includes the identity and $p^{2}-1$ elements of order either p or p^{2}. Hence, these p^{2} elements are not among the ones we've counted above. This gives a total of $\left(p^{2} q-p^{2}\right)+p^{2}=$ $p^{2} q=|G|$ elements. But we have a different Sylow p-subgroup introducing at least one extra element [which is not in the Sylow p-subgroup we've counted, nor among the elements of order q. Hence, we would have at least $p^{2} q+1$ elements, which is a contradiction.

Thus, either $n_{p}=1$ or $n_{q}=1$.

