
Midterm 2 – Solutions
Definition: Let G be a finite Abelian group. Let I(G) be the vector of invariant factors of
G, i.e., I(G) = (d1, d2, . . . , dk) if

G ∼= Z/d1Z⊕ Z/d2Z⊕ · · · ⊕ Z/dkZ,

where di+1 | di for i ∈ {1, . . . , (k − 1)}.
Let also E(I) be the vector of elementary divisors [with the order from class, as explained

below], i.e., E(I) = (q1, q2, . . . , ql) if

G ∼= Z/q1Z⊕ Z/q2Z⊕ · · · ⊕ Z/qlZ,

where qi is a power of a prime [not necessarily distinct], say qi = prii , pi prime, and if i < j
then either pi < pj or we have both pi = pj and ri ≤ rj.
[Feel free to talk to me if this definition is not clear.]

1) [20 points] Let

G1 = Z/2Z⊕ Z/22Z⊕ Z/3Z⊕ Z/3Z⊕ Z/32Z⊕ Z/52Z⊕ Z/7Z⊕ Z/72Z

G2 = Z/(23 · 32 · 5 · 72)Z⊕ Z/(32 · 5 · 7)Z

G3 = Z/22Z⊕ Z/(3 · 52 · 7)Z⊕ Z/(2 · 32)Z⊕ Z/(3 · 72)Z

(a) Compute E(Gi), I(Gi) for i = 1, 2, 3.

Solution. We have:

I(G1) = (22 · 32 · 52 · 72, 2 · 3 · 7, 3) E(G1) = (2, 22, 3, 3, 32, 527, 72)

I(G2) = (23 · 32 · 5 · 72, 32 · 5 · 7) E(G2) = (23, 32, 32, 5, 5, 7, 72)

I(G3) = (22 · 32 · 52 · 72, 2 · 3 · 7, 3) E(G3) = (2, 22, 3, 3, 32, 527, 72)

(b) Find all pairs i, j ∈ {1, 2, 3} with i < j such that Gi
∼= Gj. [Justify!]

Solution. Since Gi
∼= Gj iff I(Gi) = I(Gj) [or E(Gi) = E(Gj)], from (a) we have that

G1
∼= G3 and no other pair.

(c) If P7 ∈ Syl7(G2), then what is P7 isomorphic to?

Solution. Since [from E(G2) in (a)]:

G2
∼= Z/23Z⊕ Z/32Z⊕ Z/32Z⊕ Z/5Z⊕ Z/5Z⊕ Z/7Z⊕ Z/72Z,

we have
P7
∼= Z/7Z⊕ Z/72Z.
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2) The exponent of a group G is the smallest positive integer k [if exists] such that gk = 1
for all g ∈ G. Prove that if G is a finite Abelian group, then its exponent [exists and] is d1,
where d1 is the first entry of I(G). [So, with the additive notation, we need to prove that d1
is the smallest positive integer such that d1 · g = 0 for all g ∈ G.]

Proof. We have that
G ∼= Z/d1Z⊕ Z/d2Z⊕ · · · ⊕ Z/dkZ,

where di+1 | di for i ∈ {1, . . . , (k−1)}. We may assume that we actually have an equality [as
order of elements is preserved by isomorphisms]. Let g = (g1, g2, . . . , gk). Since gi ∈ Z/diZ,
we have that di · gi = 0. Since d1 is a multiple of di [as di | d1], we also have d1 · gi = 0,
and hence d1 · g = (d1 · g1, . . . , d1 · gk) = (0, . . . , 0) = 0. Hence, the exponent exists and if we
denote it by e we have that e ≤ d1.

Now, on the other hand, we have that e · (1, 0, 0, . . . , 0) = 0, and then e = 0 in Z/d1Z
and hence d1 | e. Thus, [since e ≤ d1] we have that e = d1.

3) Let G be a finite Abelian group such that there is H ≤ G such that H 6= {0} [using
additive notation] and if K ≤ G then H ≤ K.

(a) Prove that if such H exists, then G is cyclic of order power of a prime.

Proof. Consider the decomposition of G into its elementary factors. Suppose that
there is more than one factor. Let Z/prZ be the first and K be the direct sum of
the remaining factors. [Since we are assuming there is more than one, we have that

K 6= {0}.] Then, G = Z/prZ⊕K. We have that H1
def
= Z/prZ⊕{0} and H2

def
= {0}⊕K

are non-trivial subgroups of G, and hence H ≤ H1, H2, i.e., H ≤ H1∩H2 = {0}, which
is a contradiction.

Thus, G has only one elementary factor, and hence it is cyclic of order power of a
prime.

(b) Give an example of a non-Abelian group of finite order for which such H does exist.
[Just give me G and H. No need to justify.]

Solution. We have that H = {1,−1} is G = Q8 works.

4) Let G be a group of order 3 · 7 · 11.

(a) Prove that G has normal subgroup, say H, of order 77.

Proof. From Theorem 7.3.10(c) we get that n7 = n11 = 1. So, if P7 and P11 are
Sylow 7 and 11-subgroups of G respectively, we have P7, P11 / G. Thus, we have that

H
def
= P7 · P11 / G. We just need to now prove that |H| = 77: we have, by the Third

Isomorphism Theorem, that |H| = (|P7| · |P11|)/ |P7 ∩ P11|. But since P7 and P11 have
relatively prime orders, we must have that P7 ∩ P11 = {1}, and hence |H| = 77.
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(b) Prove that if G does not have exactly 7 subgroups of order 3, then G is cyclic.

Proof. From Theorem 7.3.10(c) we get n3 ∈ {1, 7}. So, since n3 6= 7, then n3 = 1 and,
as on (a), we have that if P3 ∈ Syl3(G), then P3 / G.

So, with the group H from (a), we have that P3 · H / G. By the Third Isomorphism
Theorem, similarly as done above, we get that |P3 ·H| = |P3| · |H| = 3 · 77 = |G|.
Hence, P3 ·H = G. Since also P3 ∩H = {1} and P3, H / G, we get that G = P3 ×H.

Now P3 is cyclic [prime order] and so is H [by Problem 7.3.5(c)]. But their orders are
relatively prime, and hence G = P3×H ∼= Z/3Z⊕Z/77Z is cyclic. [One can see that,
for instance, from the fact that I(G) = (3 · 7 · 11).

5) Let p and q be distinct primes and let G be a group of order |G| = p2q. Prove that G has
either a normal Sylow p-subgroup or a normal Sylow q-subgroup.
[Hint: This is about sizes and counting. To derive a contradiction, assume there is neither.
Use the Sylow Theorems to get that q > p. Then, what are np and nq?]

Proof. By Theorem 7.3.10(c), we have np ∈ {1, q} and nq ∈ {1, p, p2}. Assume that there is
no normal Sylow p or q-subgroup. Then, np 6= 1 [and thus np = q] and nq 6= 1 [and thus nq

is p or p2].
Since np = q > 1, we have that q ≡ 1 (mod p) [by Theorem 7.3.10(c) again], and hence

q > p. But this means that p 6≡ 1 (mod q), and so nq = p2.
Now we count elements. We have nq = p2 subgroups of order q. Since these have prime

order, they don’t intersect except at the identity. This gives us p2(q−1) = p2q−p2 elements
of order q [q − 1 for each Sylow q-subgroup].

Now we have at least 2 Sylow p-subgroups of order p2. One of them gives me p2 elements,
which includes the identity and p2 − 1 elements of order either p or p2. Hence, these p2

elements are not among the ones we’ve counted above. This gives a total of (p2q−p2)+p2 =
p2q = |G| elements. But we have a different Sylow p-subgroup introducing at least one extra
element [which is not in the Sylow p-subgroup we’ve counted, nor among the elements of
order q]. Hence, we would have at least p2q + 1 elements, which is a contradiction.

Thus, either np = 1 or nq = 1.
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