1) [20 points] Consider the following permutations in S_{7} :
$\sigma=\left(\begin{array}{lllllll}1 & 2 & 3 & 4 & 5 & 6 & 7 \\ 2 & 3 & 1 & 7 & 4 & 5 & 6\end{array}\right) \quad$ and $\quad \tau=(1,7,4)(1,3,5)(2,6) \quad$ [note it's not disjoint!].
[No need to show work for the items below!]
(a) Write $\sigma \cdot \tau$ in the matrix representation [as σ was given].

Solution.

$$
\sigma \cdot \tau=\left(\begin{array}{ccccccc}
1 & 2 & 3 & 4 & 5 & 6 & 7 \\
1 & 5 & 4 & 2 & 6 & 3 & 7
\end{array}\right)
$$

(b) Write σ as a product of disjoint cycles.

Solution. $\sigma=(1,2,3)(4,7,6,5)$.
(c) What is $|\sigma|$?

Solution. $|\sigma|=\operatorname{lcm}(3,4)=12$.
(d) Write σ as a product of transpositions.

Solution. $\sigma=(1,3)(1,2)(4,5)(4,6)(4,7)$.
(e) Find ρ such that $\rho \tau \rho^{-1}=(2,7,5)(2,3,1)(4,6)$. If there is no such ρ, say so and justify.

Solution. We have $\rho(1)=2, \rho(7)=7, \rho(4)=5, \rho(1)=2, \rho(3)=3, \rho(5)=1, \rho(2)=4$ and $\rho(6)=6$. So:

$$
\rho=\left(\begin{array}{lllllll}
1 & 2 & 3 & 4 & 5 & 6 & 7 \\
2 & 4 & 3 & 5 & 1 & 6 & 7
\end{array}\right) .
$$

2) [20 points] Consider $D_{6}=\left\{1, \rho, \rho^{2}, \ldots, \rho^{5}, \phi, \rho \phi, \rho^{2} \phi, \ldots, \rho^{5} \phi\right\}$ and its subgroup $H \stackrel{\text { def }}{=}$ $\left\langle\rho^{3}, \phi\right\rangle$.
(a) Compute $\left(\rho^{3} \phi\right)^{231} \cdot\left(\rho^{4} \phi\right)^{-1} \cdot \rho^{601}$. [Your answer should be one of the listed elements above: ρ^{i} or $\rho^{i} \phi$, with $i \in\{0, \ldots, 5\}$.]

Solution.

$$
\begin{aligned}
\left(\rho^{3} \phi\right)^{231} \cdot\left(\rho^{4} \phi\right)^{-1} \cdot \rho^{601}=\left(\rho^{3} \phi\right) \cdot & \left(\rho^{4} \phi\right) \cdot \rho \\
& =\rho^{3}\left(\phi \rho^{4}\right) \phi \rho=\rho^{3}\left(\rho^{2} \phi\right) \phi \rho=\rho^{5} \phi^{2} \rho=\rho^{5} \rho=\rho^{6}=1
\end{aligned}
$$

(b) List all the elements of H. [No need to justify or show work.]

Solution. $H=\left\{1, \rho^{3}, \phi, \rho^{3} \phi\right\}$.
(c) Is $H \triangleleft D_{6}$? [Justify!]

Solution. No, as $\phi \in H$, but $\rho \phi \rho^{-1}=\rho^{2} \phi \notin H$.
3) [15 points] Show that $A_{5} \not \neq D_{30}$. [Here, it suffices to give a structural property that one of the groups has, but the other does not.]

Proof. We have that A_{5} is simple [i.e., the only normal subgroups are $\{1\}$ and the groups itself], but D_{30} is not. For instance, $|\langle\rho\rangle|=30$, so it has index 2 in D_{30} and hence it is a proper normal subgroups different from $\{1\}$. [Or, $Z\left(D_{30}\right)=\left\{1, \rho^{15}\right\}$ is another example of a normal subgroups different from $\{1\}$.]
4) [20 points] Let $N \triangleleft G$ and $\phi \in \operatorname{Aut}(G)$. Show that $\phi(N) \triangleleft G$.

Proof. Let $y \in G$ and $m \in \phi(N)$. [We need to show that $y m y^{-1} \in \phi(N)$.] Since ϕ is a bijection [and hence onto], there is $x \in G$ such that $\phi(x)=y$. Also, by definition [of $\phi(N)$], there is $n \in N$ such that $\phi(n)=m$.

Then:

$$
y m y^{-1}=\phi(x) \phi(n) \phi(x)^{-1}=\phi(x) \phi(n) \phi\left(x^{-1}\right)=\phi\left(x n x^{-1}\right) .
$$

Since $N \triangleleft G$, we have that $x n x^{-1} \in N$, and hence, $\phi\left(x n x^{-1}\right)=y m y^{-1} \in \phi(N)$.
5) In this problem, we will prove that if $p \neq 2$ is a prime and G is a group with $|G|=2 p$, then G has a normal subgroup of order p. [It is also true for $p=2$ and it can be done directly. But here we will assume that $p \neq 2$.] You can use a previous item even if you haven't proved it!
(a) [10 points] Assume that there is no subgroup of order p. Prove that G is then Abelian. [Hint: Use an old HW problem.]

Proof. If G has an element of order p, say x, then it has a subgroup of order p, namely $\langle x\rangle$. So, it cannot have such element. Therefore, by Lagrange, every element has order $2 p, 2$ or 1 .

If $|x|=2 p$, then $\left|x^{2}\right|=|x| /(2,|x|)=p /(2, p)=p$, which is a contradiction. So, no element has order $2 p$, and hence every element has order 2 or 1 .
Thus, for all $x \in G$, we have that $x^{2}=1$. As seen in a previous HW problem, this means that G is Abelian.
(b) [10 points] Still assuming that there is no subgroup of order p, show that G has a subgroup, say N, of order 2. Since G is Abelian (by (a)), we have that $N \triangleleft G$. Derive a contradiction by looking at G / N.

Proof. Since every element has order 2 or 1 and only the identity has order one, we have that for any $x \in G \backslash\{1\}, N \stackrel{\text { def }}{=}\langle x\rangle$ has order 2 .
Since $|N|=2$, we have that $|G / N|=p$. So, an element $y N \in G / N \backslash\{1 N\}$ has order p [as p is prime]. But, y must have order 2 , as seen above. So, $(y N)^{2}=y^{2} N=N$, a contradiction since $|y N|=p>2$.
(c) [5 points] So, from the previous items, there is a subgroup of G, say H, of order p. Prove that $H \triangleleft G$.

Proof. Since $|G|=2 p$ and $|H|=p$, we have that $(G: H)=|G| /|H|=2$, and hence it is normal.

Proof.

