CAUCHY'S THEOREM FOR ABELIAN GROUPS

MATH 457

We start with the following simple lemma:

Lemma 1. If G has an element of order m, then for every divisor d of m, G has an element of order d.

Proof. If |g| = m and $d \mid m$, then

$$|g^{m/d}| = \frac{|g|}{(|g|, m/d)} = \frac{m}{(m, m/d)} = \frac{m}{m/d} = d.$$

We will need the following for the proof of Cauchy's theorem.

Definition 2. Let $n \in \mathbb{Z}_{>1}$. By the Fundamental Theorem of Arithmetic, we can write $n = p_1^{e_1} \cdots p_k^{e_k}$, with p_i 's distinct primes and $e_i \in \mathbb{Z}_{>0}$ in a unique way. Define then

$$P(n) \stackrel{\text{def}}{=} e_1 + \dots + e_n.$$

In other words, P(n) is the number of times n can be divided by [not necessarily distinct] primes.

Theorem 3 (Cauchy's Theorem for Abelian Groups). Let G be an Abelian group of order $1 < |G| = n < \infty$. Then, if p is a prime dividing n, we have that there is an element $g \in G$ of order p.

Proof. [We will use *additive* notation!]

We prove it by induction on P(|G|).

If P(|G|) = 1, then G has prime order, say p, and hence is cyclic, with a generator g of order p.

Now assume the statement is true for all groups G' with P(|G'|) < P(n). Let $x \in G, x \neq 0$. If $p \mid |x|$, then we are done by the lemma above. So, suppose that $p \nmid m \stackrel{\text{def}}{=} |x|$. Since G is Abelian, we have that $H \stackrel{\text{def}}{=} \langle x \rangle \triangleleft G$. Now P(|G/H|) < P(|G|)

MATH 457

[as |H| = m > 1]. Moreover $p \mid |G/H| = |G| / |H|$, since $p \mid |G|$ but $p \nmid m = |H|$. Hence, by the induction hypothesis, there is $y + H \in G/H$ of order p [for some $y \in G$]. But then, $p = |y + H| \mid |y|$ [as we've seen in class], and we have an element of order p in G by the lemma.

Note: This idea of doing an induction on P(|G|) can be useful in many situations!

Corollary 4. G is a finite p-group if and only if $|G| = p^r$ for some $r \in \mathbb{Z}_{\geq 0}$.

Proof. $[\Rightarrow:]$ If q is prime different from p such that $q \nmid |G|$, by the theorem G has an element of order q, and hence G cannot be a p-group.

 $[\Leftarrow:]$ This is a consequence of Lagrange's Theorem.