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We start with the following simple lemma:

Lemma 1. If G has an element of order m, then for every divisor d of m, G has an

element of order d.

Proof. If |g| = m and d | m, then∣∣gm/d
∣∣ =

|g|
(|g| ,m/d)

=
m

(m,m/d)
=

m

m/d
= d.

�

We will need the following for the proof of Cauchy’s theorem.

Definition 2. Let n ∈ Z>1. By the Fundamental Theorem of Arithmetic, we can

write n = pe11 · · · p
ek
k , with pi’s distinct primes and ei ∈ Z>0 in a unique way. Define

then

P (n)
def
= e1 + · · ·+ en.

In other words, P (n) is the number of times n can be divided by [not necessarily

distinct] primes.

Theorem 3 (Cauchy’s Theorem for Abelian Groups). Let G be an Abelian group of

order 1 < |G| = n < ∞. Then, if p is a prime dividing n, we have that there is an

element g ∈ G of order p.

Proof. [We will use additive notation!]

We prove it by induction on P (|G|).
If P (|G|) = 1, then G has prime order, say p, and hence is cyclic, with a generator

g of order p.

Now assume the statement is true for all groups G′ with P (|G′|) < P (n). Let

x ∈ G, x 6= 0. If p | |x|, then we are done by the lemma above. So, suppose that

p - m def
= |x|. Since G is Abelian, we have that H

def
= 〈x〉CG. Now P (|G/H|) < P (|G|)
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[as |H| = m > 1]. Moreover p | |G/H| = |G| / |H|, since p | |G| but p - m = |H|.
Hence, by the induction hypothesis, there is y+H ∈ G/H of order p [for some y ∈ G].

But then, p = |y + H| | |y| [as we’ve seen in class], and we have an element of order

p in G by the lemma.

�

Note: This idea of doing an induction on P (|G|) can be useful in many situations!

Corollary 4. G is a finite p-group if and only if |G| = pr for some r ∈ Z≥0.

Proof. [⇒:] If q is prime different from p such that q - |G|, by the theorem G has an

element of order q, and hence G cannot be a p-group.

[⇐:] This is a consequence of Lagrange’s Theorem. �


