1) Compute the following limits:
(a) [5 points] $\lim _{x \rightarrow 0} \frac{\sin \left(x^{2}\right)}{\ln (x+1)}$

Solution.

$$
\begin{aligned}
\lim _{x \rightarrow 0} \frac{\sin \left(x^{2}\right)}{\ln (x+1)} & =\lim _{x \rightarrow 0} \frac{\cos \left(x^{2}\right) \cdot 2 x}{1 /(x+1)} \\
& =0
\end{aligned}
$$

(b) [5 points] $\lim _{x \rightarrow 0} x \ln \left(x^{2}\right)$

Solution.

$$
\begin{aligned}
\lim _{x \rightarrow 0} x \ln \left(x^{2}\right) & =\lim _{x \rightarrow 0} \frac{\ln \left(x^{2}\right)}{1 / x} \\
& =\lim _{x \rightarrow 0} \frac{1 / x^{2} \cdot 2 x}{-1 / x^{2}} \\
& =\lim _{x \rightarrow 0}-2 x=0 .
\end{aligned}
$$

(c) $[5$ points $] \lim _{x \rightarrow 1} \frac{x^{2}+1}{(x-1)^{2}}$

Solution. Trying to plug in $x=1$ we get " $2 / 0$ ", so the limit is some kind of infinite limit. Since the numerator and denominator are always non-negative, the limit is $+\infty$.
2) Compute the derivatives of the following functions. [No need to simplify your answers!]
(a) $\left[5\right.$ points] $\frac{\mathrm{d}}{\mathrm{d} x}\left(\frac{\sqrt{x}}{\cos (x)}\right)$

Solution.

$$
\frac{\mathrm{d}}{\mathrm{~d} x}\left(\frac{\sqrt{x}}{\cos (x)}\right)=\frac{\frac{1}{2 \sqrt{x}} \cdot \cos (x)-\sqrt{x} \cdot(-\sin (x))}{(\cos (x))^{2}}
$$

(b) $[5$ points $] \frac{\mathrm{d}}{\mathrm{d} x}\left(\ln \left(x^{2}+1\right) \cdot \arctan (x)\right)$

Solution.

$$
\frac{\mathrm{d}}{\mathrm{~d} x}\left(\ln \left(x^{2}+1\right) \cdot \arctan (x)\right)=\frac{1}{x^{2}+1} \cdot 2 x \cdot \arctan (x)+\ln \left(x^{2}+1\right) \cdot \frac{1}{x^{2}+1}
$$

(c) $[5$ points $] \frac{\mathrm{d}}{\mathrm{d} x}\left(\left(\sin \left(2^{x}\right)\right)^{5}\right)$

Solution.

$$
\frac{\mathrm{d}}{\mathrm{~d} x}\left(\left(\sin \left(2^{x}\right)\right)^{5}\right)=5\left(\sin \left(2^{x}\right)\right)^{4} \cdot \cos \left(2^{x}\right) \cdot 2^{x} \cdot \ln (2)
$$

3) Consider the curve given by the equation:

$$
x^{2}-y^{2}=1
$$

(a) [5 points] Find the equation of the tangent line at the point $(2, \sqrt{3})$.

Solution. We have:

$$
2 x-2 y y^{\prime}=0, \quad \text { and so } \quad y^{\prime}=\frac{x}{y}
$$

So, the equation is:

$$
y-\sqrt{3}=\frac{2}{\sqrt{3}}(x-2)
$$

(b) [5 points] Is the curve concave up or concave down at $(2, \sqrt{3})$? [Justify or you get zero!]

Solution. We have:

$$
y^{\prime \prime}=\frac{\mathrm{d}}{\mathrm{~d} x}\left(\frac{x}{y}\right)=\frac{1 \cdot y-x \cdot y^{\prime}}{y^{2}}=\frac{y-x^{2} / y}{y^{2}}=\frac{y^{2}-x^{2}}{y^{3}} .
$$

At $(2, \sqrt{3})$ we get $-\frac{1}{3 \sqrt{3}}<0$, so it is concave down.
4) [5 points] Find the equation of the line tangent to the curve given by

$$
\begin{aligned}
& x(t)=t^{2}-t \\
& y(t)=\sqrt{t}+\frac{1}{t}
\end{aligned}
$$

at $t=1$.
Solution. We have:

$$
\begin{aligned}
& x^{\prime}(t)=2 t-1 \\
& y^{\prime}(t)=\frac{1}{2 \sqrt{t}}-\frac{1}{t^{2}}
\end{aligned}
$$

So, at $t=1$ the slope is $y^{\prime}(1) / x^{\prime}(1)=(-1 / 2) / 1=-1 / 2$. Since $x(1)=0$ and $y(1)=2$, the equation of the tangent line is:

$$
y-2=-\frac{1}{2}(x-0)
$$

5) Let $f(x)=x^{3}-4 x$.
(a) [2 points] Find the x and y-intercepts of $f(x)$.

Solution. y-intercept is $f(0)=0$.
Since $f(x)=x^{3}-4 x=x(x-2)(x+2)=0$ gives $x=-2,0,2$, these are the x intercept.
(b) [5 points] Give the intervals where $f(x)$ is increasing and decreasing and its critical points [if any], classifying them as local maximum, local minimum or neither.

Solution. We have $f^{\prime}(x)=3 x^{2}-4$, so the critical points are $\pm 2 / \sqrt{3}$. Analyzing the signs we obtain positive [so $f(x)$ is increasing] on $(-\infty,-2 / \sqrt{3})$ and $(2 / \sqrt{3}, \infty)$, and negative [and so $f(x)$ is decreasing] on $(-2 / \sqrt{3}, 2 / \sqrt{3})$. Thus $-2 \sqrt{3}$ is a local maximum and $2 / \sqrt{3}$ is a local minimum.
(c) [5 points] Give the intervals where $f(x)$ is concave up and concave down and its inflection points [if any].

Solution. We have that $f^{\prime \prime}(x)=6 x$. So it is positive [and hence $f(x)$ is concave up] in $(0, \infty)$ and it is negative [and hence $f(x)$ is concave down] in $(-\infty, 0)$. Thus, 0 is an inflection point.
(d) [5 points] Compute $\lim _{x \rightarrow \infty} f(x)$ and $\lim _{x \rightarrow-\infty} f(x)$

Solution. We have:

$$
\lim _{x \rightarrow-\infty} x^{3}-4 x=-\infty \quad \text { and } \quad \lim _{x \rightarrow \infty} x^{3}-4 x=\infty
$$

(e) [8 points] Sketch the graph of $f(x)$ below. [Hint: $2 / \sqrt{3}=2 \sqrt{3} / 3 \approx 1.547$ and $f(2 / \sqrt{3}) \approx-3.079$.]

6) [10 points] Let $v(t)$ be the velocity of a particle moving along a straight line at time t. The picture below is the graph of $v(t)$:

Which of the graphs below could represent the position of the particle and which could represent the acceleration? [Label the graph clearly!]

7) [10 points] A person in the audience watches a runner pass by in a long straight stretch. [See the picture below.] The person is 3 meters away from the track and the runner is running at a constant speed of 2.5 meters per second. [The runner is going $u p$ in the picture below, i.e., x is increasing.] How fast is the distance between the runner and the person in the audience [labeled y in the picture] increasing when the runner is 5 meters away [i.e., when $y=5]$?

Solution. We have $3^{2}+x^{2}=y^{2}$. Taking derivatives we get $2 x x^{\prime}=2 y y^{\prime}$, which implies $y^{\prime}=x x^{\prime} / y=2.5 \cdot x / y$.

When $y=5$ we get $x=4$ [from the equation above] and so, at that moment we get $y^{\prime}=2.5 \cdot 4 / 5=2$ meters per second.
8) [10 points] You need to build a box with a square base, with both bottom and top [lid]. The box must have volume 16 cubic inches. The cost of the material for the sides of the box is 1 dollar per square inch, and the cost for the sturdier material for the top and bottom of the box is 2 dollars per square inch. What is the minimal cost to build this box?

Solution. Let x be the length of the side of the square bottom [and top] and y be the height of the box. Then, the total cost is:

$$
C=2 \cdot x^{2} \cdot 2+4 \cdot x y \cdot 1=4 x^{2}+4 x y
$$

Now, the volume gives us:

$$
16=x^{2} y, \quad \text { and so } \quad y=\frac{16}{x^{2}}
$$

So, we have that cost, in terms of x is:

$$
C=4 x^{2}+\frac{64}{x}, \quad \text { with } x \in(0, \infty)
$$

So, $C^{\prime}=8 x-64 / x^{2}=0$. Simplifying, it gives us $x^{3}=8$, i.e., $x=2$. Analyzing the sign of the derivative we see that $x=2$ is a global minimum.

So, the minimal cost is 48 dollars.

