1) Compute the derivatives of the following functions. [No need to simplify your answers!]
(a) [6 points] $f(x)=x \cdot \mathrm{e}^{x} \cdot \cos (x)$

Solution.

$$
\begin{aligned}
f^{\prime}(x) & =1 \cdot \mathrm{e}^{x} \cdot \cos (x)+x \frac{\mathrm{~d}}{\mathrm{~d} x}\left(\mathrm{e}^{x} \cdot \cos (x)\right) \\
& =\mathrm{e}^{x} \cdot \cos (x)+x\left(\mathrm{e}^{x} \cdot \cos (x)+\mathrm{e}^{x} \cdot(-\sin (x))\right) \\
& =\mathrm{e}^{x}(\cos (x)+x(\cos (x)-\sin (x))) .
\end{aligned}
$$

(b) $[7$ points $] f(x)=\frac{\sin \left(\mathrm{e}^{x}+1\right)}{2 x^{2}}$

Solution.

$$
\begin{aligned}
f^{\prime}(x) & =\frac{\cos \left(\mathrm{e}^{x}+1\right) \cdot \mathrm{e}^{x} \cdot 2 x^{2}-\sin \left(\mathrm{e}^{x}+1\right) \cdot 4 x}{\left(2 x^{2}\right)^{2}} \\
& =\frac{\cos \left(\mathrm{e}^{x}+1\right) \cdot \mathrm{e}^{x} \cdot 2 x^{2}-\sin \left(\mathrm{e}^{x}+1\right) \cdot 4 x}{4 x^{4}} \\
& =\frac{\cos \left(\mathrm{e}^{x}+1\right) \cdot \mathrm{e}^{x} \cdot x-\sin \left(\mathrm{e}^{x}+1\right) \cdot 2}{2 x^{3}}
\end{aligned}
$$

(c) [7 points] $f(x)=\arctan (x)^{x}$. [Note: $\arctan (x)$ is the same as $\tan ^{-1}(x)$.]

Solution. Using logarithmic derivative:

$$
\begin{aligned}
f^{\prime}(x) & =f(x) \cdot \frac{\mathrm{d}}{\mathrm{~d} x}(\ln (f(x))) \\
& =\arctan (x)^{x} \cdot \frac{\mathrm{~d}}{\mathrm{~d} x}(x \cdot \ln (\arctan (x))) \\
& =\arctan (x)^{x} \cdot\left(\ln (\arctan (x))+x \frac{1}{\arctan (x)} \cdot \frac{1}{1+x^{2}}\right)
\end{aligned}
$$

2) [15 points] Find the equation of the line tangent to the curve given by

$$
x^{2} y=x-y^{3}+1
$$

at the point $(0,1)$.
Solution. Taking derivatives of both sides with respect to x, we get:

$$
2 x y+x^{2} y^{\prime}=1-3 y^{2} y^{\prime}
$$

Solving for y^{\prime}, we get:

$$
y^{\prime}=\frac{1-2 x y}{x^{2}+3 y^{2}} .
$$

So, the slope at the point $(0,1)$ is $1 / 3$ and the equation of the tangent line is

$$
y-1=\frac{1}{3}(x-0) .
$$

3) [15 points] A machine on a dock reels a cable, attached to a barge [see picture below], with a speed of 1 foot per second. The point at which the cable is attached, labeled P in the picture, is 4 feet lower than the reel and is located at the very front of the barge. How fast is the barge moving when the front of it [point P] is 3 feet away [horizontally!] from the dock?

Solution. Let s be the horizontal distance between the barge and the dock and l be the length of the rope. Then, by Pythagoras, we have that

$$
l^{2}=s^{2}+4^{2} .
$$

Taking derivatives with respect to time we get

$$
2 \cdot l \cdot l^{\prime}=2 \cdot s \cdot s^{\prime}, \quad \text { and so } \quad s^{\prime}=\frac{l \cdot l^{\prime}}{s}
$$

We have that $l^{\prime}=1$ [from the statement] and when $s=3$ we have that, by Pythagoras, $l=5$ and so $s^{\prime}=5 / 3$, which is the speed at which the barge approaches the dock [in feet per second].
4) $[15$ points $]$ Use the tangent line approximation to estimate $\sqrt{10}$.

Solution. Let $f(x)=\sqrt{x}$. Then, close to $x=9$, the tangent line approximation gives us that:

$$
f(x)=\sqrt{x} \approx f(9)+f^{\prime}(9)(x-9)=\sqrt{9}+\frac{1}{2 \sqrt{9}}(x-9)=3+\frac{1}{6}(x-9)
$$

So,

$$
\sqrt{10} \approx 3+\frac{1}{6}=\frac{19}{6}=3.3333 \ldots
$$

5) [15 points] Find [absolute] maximum and minimum [both x-coordinate and corresponding value of the function $]$ of $f(x)=2 x^{3}-3 x^{2}+2$ in the interval $[-1,2]$.

Solution. We have

$$
f^{\prime}(x)=6 x^{2}-6 x=6 x(x-1)
$$

So, the derivative is defined everywhere and it is zero at $x=0$ and $x=1$.
We have

$$
\begin{aligned}
f(-1) & =-3 \\
f(0) & =2 \\
f(1) & =1 \\
f(2) & =6 .
\end{aligned}
$$

So, the absolute maximum is 6 at $x=2$ and the absolute minimum is -3 at $x=-1$.
6) [20 points] Let $f(x)=x^{7 / 3}-7 x^{1 / 3}+1$. Its first and second derivatives are

$$
f^{\prime}(x)=\frac{7}{3}\left(x^{4 / 3}-x^{-2 / 3}\right) \quad \text { and } \quad f^{\prime \prime}(x)=\frac{14}{9}\left(2 x^{1 / 3}+x^{-5 / 3}\right)
$$

respectively. [No need to check! Just use it!]
[Note: In all items below you can use "DNE" for "does not exist".]
(a) Give the intervals in which $f(x)$ is increasing and the intervals in which it is decreasing.

Solution. It is increasing where $f^{\prime}(x)$ is positive and decreasing where negative.
Solving where is zero:

$$
\frac{7}{3}\left(x^{4 / 3}-x^{-2 / 3}\right)=\frac{7}{3} x^{-2 / 3}\left(x^{2}-1\right)=\frac{7}{3} x^{-2 / 3}(x-1)(x+1)=0
$$

So, it is zero at ± 1 and not defined at $x=0$. Analyzing the signs, we get: [positive, so] increasing on $(-\infty,-1) \cup(1, \infty)$ and [negative, so] decreasing on $(-1,0) \cup(0,1)$. [Decreasing on $(-1,1)$ is also OK.]
(b) Give all critical points [x-coordinate only] and classify them as local maximum, local minimum or neither.

Solution. The x-coordinates of the critical points are -1 (local maximum), 0 (neither) and 1 (local minimum).
(c) Give all intervals in which the graph of the function $f(x)$ is concave up and all intervals in which it is concave down.

Solution. It is concave up where $f^{\prime \prime}(x)$ is positive and down where negative.
Solving where is zero:

$$
\frac{14}{9}\left(2 x^{1 / 3}+x^{-5 / 3}\right)=\frac{14}{9} x^{-5 / 3}\left(2 x^{2}+1\right)=0
$$

But this function is then never 0 and it is not defined at $x=0$. Analyzing the signs: [negative, so] concave down on $(-\infty, 0)$ and [positive, so] concave up on $(0, \infty)$.
(d) Give all inflection points [x-coordinate only] of $f(x)$

Solution. There is only one inflection point, and it occurs at $x=0$ [where it changes concavity].

