1) [15 points] Draw the graph of a function $y=f(x)$ such that:
(i) $\lim _{x \rightarrow-2} f(x)=1$
(ii) $\lim _{x \rightarrow 0} f(x)=-\infty$
(iii) $\lim _{x \rightarrow 2^{-}} f(x)=0$
(iv) $\lim _{x \rightarrow 2^{+}} f(x)=2$
(v) $f(2)=1$ [this is not a limit]
(vi) $\lim _{x \rightarrow \infty} f(x)=1$

Solution. There are many ways to draw this. Here is one possibility:

2) Compute the following limits.
(a) [6 points] $\lim _{x \rightarrow 2} \frac{x^{2}-4 x+4}{x^{2}-4}$

Solution.

$$
\begin{aligned}
\lim _{x \rightarrow 2} \frac{x^{2}-4 x+4}{x^{2}-4} & =\lim _{x \rightarrow 2} \frac{(x-2)^{2}}{(x-2)(x+2)} \\
& =\lim _{x \rightarrow 2} \frac{(x-2)}{(x+2)} \\
& =\frac{0}{4}=0 .
\end{aligned}
$$

(b) $[7$ points $] \lim _{x \rightarrow 2} \frac{\sqrt{x-1}-1}{x-2}$

Solution.

$$
\begin{aligned}
\lim _{x \rightarrow 2} \frac{\sqrt{x-1}-1}{x-2} & =\lim _{x \rightarrow 2} \frac{\sqrt{x-1}-1}{x-2} \cdot \frac{\sqrt{x-1}+1}{\sqrt{x-1}+1} \\
& =\lim _{x \rightarrow 2} \frac{(x-1)-1}{(x-2)(\sqrt{x-1}+1)} \\
& =\lim _{x \rightarrow 2} \frac{1}{\sqrt{x-1}+1}=\frac{1}{2}
\end{aligned}
$$

(c) $[6$ points $] \lim _{x \rightarrow \infty} \frac{\sqrt{9 x^{4}+x^{2}+1}}{x-2 x^{2}}$

Solution.

$$
\begin{aligned}
\lim _{x \rightarrow \infty} \frac{\sqrt{9 x^{4}+x^{2}+1}}{x-2 x^{2}} & =\lim _{x \rightarrow \infty} \frac{x^{2} \sqrt{9+x^{-2}+x^{-4}}}{x^{2}\left(x^{-1}-2\right)} \\
& =\lim _{x \rightarrow \infty} \frac{\sqrt{9+x^{-2}+x^{-4}}}{\left(x^{-1}-2\right)} \\
& =\frac{\sqrt{9}}{-2}=-\frac{3}{2}
\end{aligned}
$$

(d) $[7$ points $] \lim _{x \rightarrow 0} \frac{\sin (3 x) \cos (4 x)}{2 x}$

Solution.

$$
\begin{array}{rlr}
\lim _{x \rightarrow 0} \frac{\sin (3 x) \cos (4 x)}{2 x} & =\left(\lim _{x \rightarrow 0} \cos (4 x)\right) \cdot\left(\lim _{x \rightarrow 0} \frac{\sin (3 x)}{2 x}\right) \\
& =1 \cdot \frac{1}{2}\left(\lim _{x \rightarrow 0} \frac{\sin (3 x)}{x}\right) \\
& =\frac{1}{2}\left(\lim _{u \rightarrow 0} \frac{\sin (u)}{u / 3}\right) & \quad[\text { subs. } u=3 x] \\
& =\frac{3}{2}\left(\lim _{u \rightarrow 0} \frac{\sin (u)}{u}\right)=\frac{3}{2} &
\end{array}
$$

3) [15 points] Compute the derivative of $f(x)=x+\frac{1}{x}$ using limits. [You cannot use formulas. You can check your result with the formulas, though.]

Solution. We have:

$$
\begin{aligned}
f^{\prime}(x) & =\lim _{h \rightarrow 0} \frac{f(x+h)-f(x)}{h} \\
& =\lim _{h \rightarrow 0} \frac{\left(x+h+\frac{1}{x+h}\right)-\left(x+\frac{1}{x}\right)}{h} \\
& =\lim _{h \rightarrow 0} \frac{h+\frac{1}{x+h}-\frac{1}{x}}{h} \\
& =\lim _{h \rightarrow 0} \frac{h+\frac{x-(x+h)}{x(x+h)}}{h} \\
& =\lim _{h \rightarrow 0} \frac{h+\frac{-h}{x(x+h)}}{h} \\
& =\lim _{h \rightarrow 0} 1+\frac{-1}{x(x+h)} \\
& =1-\frac{1}{x^{2}} .
\end{aligned}
$$

So, $f^{\prime}(x)=1-\frac{1}{x^{2}}$.
4) [14 points] Give the equation of the line tangent to the graph of $f(x)=2 \sqrt{x}-\frac{3}{x}$ at $x=1$. Solution. We have [using formulas] $f^{\prime}(x)=\frac{1}{\sqrt{x}}+\frac{3}{x^{2}}$. Then, $f^{\prime}(1)=1+3=4$. Since $f(1)=-1$, we have that the equation of the tangent line is:

$$
y+1=4(x-1) .
$$

5) [15 points] Give a [finite] closed interval in which we have a solution to $2^{x}+3^{x}=4^{x}$. [Justify!]

Solution. Let $f(x)=2^{x}+3^{x}-4^{x}$. Then, $f(1)=1$ and $f(2)=-3$. So, by the Intermediate Value Theorem, there is a zero of $f(x)$, and therefore a solution of the equation, in the closed interval $[1,2]$.
6) [15 points] The graph of $f(x)$ is given below.

Answer the following questions about the values of the derivative of $f(x)$. No need to justify these.
(a) Fill the table below with + , - , or 0 if the corresponding value is positive, negative, or zero respectively.

value:	$f^{\prime}(-2)$	$f^{\prime}(0)$	$f^{\prime}(1)$	$f^{\prime}(2)$	$f^{\prime}(3)$
sign:	-	+	0	-	+

(b) Which is larger, $f^{\prime}(-2)$ or $f^{\prime}(2)$? [If they are equal, just say so.]

Solution. We have that $f^{\prime}(2)>f^{\prime}(-2)$, as the slope of the tangent line at $x=-2$ is "more negative" then the slope of the tangent line at $x=2$.

