
What’s Calculus?

Answer: Next semester! (Fundamental Theorem of Calculus, by
Newton and Leibniz.)

Virtually all of modern science uses calculus! Physics, engineering,
statistics, biology (modeling), etc.

This semester: Differential Calculus. (Tangent lines.)
Next semester: Integral Calculus. (Areas.)



Areas

Computing areas is one the most classical problems in
mathematics. (The term geometry comes from the Greek “land (or
earth) measurement”.) The idea is to compare the space taken by
a plane shape with the space taken by one square of side 1.

I Area of rectangle: length of base times length of height.

I Area of triangle: half of the length of base times length of
height. (From this, we can get areas of polygons.)

I Area of Circle: π times the square of the radius. Why????
How did one find that out?



Other Areas

How about the area of an ellipse? Say (x/3)2 + (y/2)2 = 1?
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What’s its area?



Other Areas

How about the area between a line and a parabola? How about
two parabolas?
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These are hard questions! Answers in Math 142.



Movement

Suppose that you know that a particle in moving along a straight
line such that t seconds after we start observing the movement,
the position of the particle is t2 meters from the original position.
In other words, the position of the particle is given by the function
s(t) = t2.
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One can clearly see that the particle is accelerating.



Average Speed

Since we know the position at any time, we should be able to find
out everything about the movements of the particle! (Not only its
position at a given time.)

For instance, we can find the average speed of the particle in a
period. For instance, the average speed between t = 1 and t = 2:

∆s

∆t
=

s(2) − s(1)

2 − 1
=

4 − 1

2 − 1
= 3.

Between t = 2 and t = 3:

∆s

∆t
=

s(3) − s(2)

3 − 2
=

9 − 4

3 − 2
= 5.



Instantaneous Speed

But how about the instantaneous speed at, say t = 2. (What is
the speedometer showing if we look at it at t = 2?) Much harder!
Idea: I might not be able to know the exact speed, but I can get a
very good idea: find the average speed of a tiny interval starting at
t = 2. The smaller the interval is, the less time the particle had to
change its speed, so the closest we get to the real speed at t = 2!
So, we find the average speed between t = 2 and t = 2 + ∆t, for
∆t small. Here are some computations:

∆t Aver. Sp.
0.1 4.1

0.01 4.01
0.001 4.001

0.0001 4.0001

So, the speed at t = 2 is pretty close to 4.0001. (Is it 4?)



Computing Average Speeds

The computations done for the average speed on the previous slide
can be done quite quickly by a computer (or even calculator). But
imagine for a second we have to compute lots of different average
speeds by hand!
Here is a smart way of doing it :find a formula for the average
speed! The average speed between t = t0 and t = t0 + ∆t is:

∆s

∆t
=

s(t0 + ∆t) − s(t0)

(t0 + ∆t) − t0
=

(t0 + ∆t)2 − t2
0

∆t

=
(t2

0 + 2to∆t + (∆t)2) − t2
0

∆t

=
2to∆t + (∆t)2

∆t
=

2to��∆t + (∆t)�2

��∆t
= 2t0 + ∆t.



Computing Average Speeds

This makes it easy to compute average speeds and estimate
instantaneous speeds:

t0 ∆t Aver. Sp.
1 2 4

2.5 0.01 5.01
3 0.01 6.01
4 0.01 8.01

In particular, the instantaneous speed at t = 2.5 is approximately
5.01, the instantaneous speed at t = 3 is approximately 6.01, the
instantaneous speed at t = 4 is approximately 8.01.



Instantaneous Speed

But how do we find the exact instantaneous speed? The idea is
that we want ∆t = 0. But this doesn’t seem to make sense:

∆s

∆t
=

s(t0 + 0) − s(t0)

(t0 + 0) − t0
=

s(t0) − s(t0)

t0 − t0
=

0

0
!

But we cannot divide by 0!

On the other hand, we have a formula for the average speed
∆s/∆t: 2t0 + ∆t. So, here, we can make ∆t = 0 without dividing
by 0! Hence, the instantaneous speed of the particle at t = t0

is 2t0.

So, the (instantaneous) speed at t = 2 is 4, the (instantaneous)
speed at t = 3 is 6, the (instantaneous) speed at t = 4 is 8, etc.



Geometrical Interpretation of Average Speed

Now let’s look at the geometry of the average speed. The formula
∆s
∆t is basically a slope ( ∆y

∆x ). The average speed between t = t0

and t = t0 + ∆t is the slope of the line secant to the graph of
s(t) through t = t0 and t = t0 + ∆t.
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Geometrical Interpretation of Instantaneous Speed

So, what is the geometrical interpretation of the instantaneous
speed? It is the slope of the tangent line at t = t0!
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Tangent Line
The tangent line is geometrically defined precisely as in the
previous pictures: take secant lines and make the second point go
approach the first.
Another way to see it: if a curve is smooth (no sharp edge), by
zooming in enough, it starts to look like a straight line. This
straight line is the tangent line! (A line which is not tangent makes
an angle!)
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Rates of Change

A bit of terminology: the rate of change of the position of a
particle is its instantaneous speed. More precisely, it is how fast
the position change when the time changes.

As we’ve seen, the speed (i.e., rate of change) of the position s(t)
at t = t0 is the slope of the tangent line to the graph s = s(t) at
t = t0.

In general, the rate of change of a function f (x) at x = x0 is the
slope of the tangent line to the graph y = f (x) at x = x0. This
tells us how fast is the y value changing at x = x0.



Computations

As we’ve seen, to compute rates of change (or slopes of the
tangent line) of y = f (x) at x = 0, we do:

I Consider the ratio:
f (x0 + ∆x) − f (x0)

∆x
;

I simplify so that we don’t have a ∆x in the denominator;

I replace ∆x by 0.



Example

Consider f (x) = x2 − x . What is the slope of the tangent line at
x = 1?

f (1 + ∆x) − f (1)

∆x
=

[(1 + ∆x)2 − (1 + ∆x)] − (12 − 1)

∆x

=
[(12 + 2∆x + (∆x)2) − (1 + ∆x)] − 0

∆x

=
∆x + (∆x)2

∆x
= 1 + ∆x .

Now, we can make ∆x = 0 in the above expression, obtaining the
answer: 1.



Problems

There are two problems: the above is not mathematically precise!
It is a procedure, but does not define rate of change/slope of
tangent line precisely.

Also, does the procedure always work? Consider the tangent line of
y = sin(x) at x = 0. How do you simplify

sin(0 + ∆x) − sin(0)

∆x
=

sin(∆x)

∆x

to cancel out the ∆x in the denominator (so that we can replace it
by 0)? Hard!

We need the notion of limit!


