1) [20 points] Fill in the blanks [no need to justify]:

- (a) dim $(\mathbb{R}^5) = 5$
- (b) $\dim(P_7) = \boxed{8}$
- (c) $\dim(M_{3\times 2}) = 6$
- (d) If rank(A) = 4 and the system $A\mathbf{x} = \mathbf{b}$ is consistent, then rank $([A|\mathbf{b}]) = 4$
- (e) If A is an 3×4 matrix for which T_A [the linear transformation given by $T(\mathbf{x}) = A\mathbf{x}$] is one-to-one, then rank $(A) = \boxed{3}$
- (f) If $T: \mathbb{R}^7 \to \mathbb{R}^5$ is an onto linear transformation, then rank([T]) = 5
- (g) If A is a 4×6 matrix with nulltiy(A) = 3, then:
 - dim. of row sp of A = 3dim. of col. sp of A = 3rank(A) = 3rank $(A^{T}) = 3$ nulltiy $(A^{T}) = 1$

2) [15 points] Let $\mathbf{v}_1 = (1, -1, 0, 3)$ and $\mathbf{v}_2 = (1, 0, -1, 0)$. Is $\mathbf{v} = (-1, -2, 3, 6)$ a linear combination of \mathbf{v}_1 and \mathbf{v}_2 ? If so, write \mathbf{v} as such linear combination. [Show work!]

Solution.

$$\begin{bmatrix} 1 & 1 & | & -1 \\ -1 & 0 & 2 \\ 0 & -1 & 3 \\ 3 & 0 & 6 \end{bmatrix} \sim \begin{bmatrix} 1 & 1 & | & -1 \\ 0 & 1 & | & -3 \\ 0 & -1 & 3 \\ 0 & 3 & | & 3 \end{bmatrix} \sim \begin{bmatrix} 1 & 0 & | & 2 \\ 0 & 1 & | & -3 \\ 0 & 0 & | & 0 \\ 0 & 0 & | & 0 \end{bmatrix}$$

The system has solution $x_1 = 2, x_2 = -3$, so it is a linear combination, namely

$$\mathbf{v} = 2 \cdot \mathbf{v}_1 + (-3) \cdot \mathbf{v}_2.$$

3) [15 points] Let $W = \text{span}\{(1, 0, 2, 1), (0, 1, 1, 1)\}$. Find a basis for the orthogonal complement W^{\perp} .

Solution.

$$\left[\begin{array}{rrrrr} 1 & 0 & 2 & 1 & 0 \\ 0 & 1 & 1 & 1 & 0 \end{array}\right]$$

is already in reduced row echelon form giving solution

$$\begin{bmatrix} x_1\\x_2\\x_3\\x_4 \end{bmatrix} = \begin{bmatrix} -2s-t\\-s-t\\s\\t \end{bmatrix} = s \cdot \begin{bmatrix} -2\\-1\\1\\0 \end{bmatrix} + t \cdot \begin{bmatrix} -1\\-1\\0\\1 \end{bmatrix}.$$

So, a basis for W^{\perp} is $\{(-2, -1, 1, 0), (-1, -1, 0, 1)\}.$

4) [15 points] Let $T : \mathbb{R}^2 \to \mathbb{R}^2$ be the linear transformation for which $T(\mathbf{x})$ is given by:

- (i) Rotate **x** by 45 degrees [counter-clockwise];
- (ii) Reflect the resulting vector about the *y*-axis;
- (iii) Project this last vector onto the x-axis.

Find [T] and T(-2, 1).

Solution. There are two ways to find [T]. First you can multiply the matrices of the given linear transformations [from right to left]:

$$[T] = \begin{bmatrix} 1 & 0 \\ 0 & 0 \end{bmatrix} \cdot \begin{bmatrix} -1 & 0 \\ 0 & 1 \end{bmatrix} \cdot \begin{bmatrix} \cos(\pi/4) & -\sin(\pi/4) \\ \sin(\pi/4) & \cos(\pi/4) \end{bmatrix} = \begin{bmatrix} -\sqrt{2}/2 & \sqrt{2}/2 \\ 0 & 0 \end{bmatrix}$$

Alternatively, we have $[T] = [T(\mathbf{e}_1) \ T(\mathbf{e}_2)]$:

$$\mathbf{e}_{1} = (1,0) \xrightarrow{(i)} (\sqrt{2}/2,\sqrt{2}/2) \xrightarrow{(ii)} (-\sqrt{2}/2,\sqrt{2}/2) \xrightarrow{(iii)} (-\sqrt{2}/2,0)$$
$$\mathbf{e}_{2} = (0,1) \xrightarrow{(i)} (-\sqrt{2}/2,\sqrt{2}/2) \xrightarrow{(ii)} (\sqrt{2}/2,\sqrt{2}/2) \xrightarrow{(iii)} (\sqrt{2}/2,0)$$

So,

$$[T] = \left[\begin{array}{cc} -\sqrt{2}/2 & \sqrt{2}/2 \\ 0 & 0 \end{array} \right]$$

In either case,

$$T(-2,1) = [T] \cdot \begin{bmatrix} -2\\1 \end{bmatrix} = \begin{bmatrix} -\sqrt{2}/2 & \sqrt{2}/2\\0 & 0 \end{bmatrix} \cdot \begin{bmatrix} -2\\1 \end{bmatrix} = \begin{bmatrix} 3\sqrt{2}/2\\0 \end{bmatrix}$$

5) [15 points] Let B be the standard basis of P_2 and $B' = \{1, 1 + x, 1 + x + x^2\}$. You may assume [without proving] that B' is also a basis of P_2 .

(a) Find the transition matrix $P_{B \to B'}$.

Solution. We have
$$(1)_B = (1, 0, 0), (1+x)_B = (1, 1, 0), (1+x+x^2)_B = (1, 1, 1).$$
 Thus,

$$\begin{bmatrix} 1 & 1 & 1 & | & 1 & 0 & 0 \\ 0 & 1 & 1 & | & 0 & 1 & 0 \\ 0 & 0 & 1 & | & 0 & 0 & 1 \end{bmatrix} \sim \begin{bmatrix} 1 & 1 & 0 & | & 1 & 0 & -1 \\ 0 & 1 & 0 & | & 0 & 1 & -1 \\ 0 & 0 & 1 & | & 0 & 0 & 1 \end{bmatrix} - \begin{bmatrix} 1 & 0 & 0 & | & 1 & -1 & 0 \\ 0 & 1 & 0 & | & 0 & 0 & 1 \end{bmatrix}.$$
So,

$$P_{B \to B'} = \begin{bmatrix} 1 & -1 & 0 \\ 0 & 1 & -1 \\ 0 & 0 & 1 \end{bmatrix}.$$

(b) Find $(1 - 2x + 3x^2)_{B'}$.

Solution. We have that $(1 - 2x + 3x^2)_B = (1, -2, 3)$. So,

$$(1 - 2x + 3x^2)_{B'} = P_{B \to B'} \cdot (1 - 2x + 3x^2)_B = \begin{bmatrix} 1 & -1 & 0 \\ 0 & 1 & -1 \\ 0 & 0 & 1 \end{bmatrix} \cdot \begin{bmatrix} 1 \\ -2 \\ 3 \end{bmatrix} = \begin{bmatrix} 3 \\ -5 \\ 3 \end{bmatrix}.$$

6) Let $S = \{(1, 0, 1, 2, 1), (0, 1, 1, -1, 2), (-1, 2, 1, -4, 3), (2, 1, 2, -1, 1), (0, 0, 1, 4, 3)\}$ and let V = span(S) [the subspace of \mathbb{R}^5 spanned by the set S]. Given that

Γ	· 1	0	1	2	1 -		1	0	0	-2	-2]
	0	1	1	-1	2		0	1	0	-5	-1
	-1	2	1	-4	3	$\xrightarrow{\text{red. ech. form}}$	0	0	1	4	3
	2	1	2	-1	1		0	0	0	0	0
	0	0	1	4	3		0	0	0	0	0

and

answer the following. [No need to justify.]

(a) [5 points] Find a basis of V made of vectors in S.

Solution. Use columns of the matrix where the elements of S are put into columns [the on in the bottom] that correspond to the columns of its reduced row echelon form with leading ones. So,

$$B = \{(1, 0, 1, 2, 1), (0, 1, 1, -1, 2), (2, 1, 2, -1, 1)\}$$

[first, second and fourth vectors].

(b) [5 points] If B is the basis you've found in part (a), express the vectors in S that are not in B as a linear combination of vectors in B.

Solution. [You can use the reduced row echelon form, which makes it easy!] If \mathbf{v}_i is the *i*-th vector of S, we have:

$$\mathbf{v}_3 = -1 \cdot \mathbf{v}_1 + 2 \cdot \mathbf{v}_2, \qquad \mathbf{v}_5 = 2 \cdot \mathbf{v}_1 + 1 \cdot \mathbf{v}_2 + (-1) \cdot \mathbf{v}_4.$$

(c) [5 points] Find a second basis B' for V [with $B \neq B'$].

Solution. We can now put the vectors of S as rows [top matrix] to find a new basis, made of non-zero vectors of its reduced row echelon form. So, we get

$$B' = \{(1, 0, 0, -2, -2), (0, 1, 0, -5, -1), (0, 0, 1, 4, 3)\}.$$

(d) [5 points] Find the coordinates of the first vector of B with respect to B'.

Solution. The nature of basis B' [the "simplest" basis for span(S)], makes it very easy:

1	0	0	1		1	0	0	1
0	1	0	0		0	1	0	0
0	0	1	1	\sim	0	0	1	1
-2	-5	4	2		0	0	0	0
2	-1	3	1		0	0	0	0

The system has solution $(x_1, x_2, x_3) = (1, 0, 1)$ and so $(\mathbf{v}_1)_{B'} = (1, 0, 1)$.

[Note that the second step to put the matrix of the system in reduced row echelon form is not necessary! We know \mathbf{v}_1 is a linear combination of elements of B', and hence the system does have a solution, and this solution can be seen straight from the first matrix.]