1) [20 points] Fill in the blanks [no need to justify]:
(a) $\operatorname{dim}\left(\mathbb{R}^{5}\right)=5$
(b) $\operatorname{dim}\left(P_{7}\right)=8$
(c) $\operatorname{dim}\left(M_{3 \times 2}\right)=6$
(d) If $\operatorname{rank}(A)=4$ and the system $A \mathbf{x}=\mathbf{b}$ is consistent, then $\operatorname{rank}([A \mid \mathbf{b}])=4$
(e) If A is an 3×4 matrix for which T_{A} [the linear transformation given by $T(\mathbf{x})=A \mathbf{x}$] is one-to-one, then $\operatorname{rank}(A)=3$
(f) If $T: \mathbb{R}^{7} \rightarrow \mathbb{R}^{5}$ is an onto linear transformation, then $\operatorname{rank}([T])=5$
(g) If A is a 4×6 matrix with $\operatorname{nulltiy}(A)=3$, then:

$$
\begin{aligned}
\operatorname{dim} \text {. of row sp of } A & =3 \\
\text { dim. of col. sp of } A & =3 \\
\operatorname{rank}(A) & =3 \\
\operatorname{rank}\left(A^{\mathrm{T}}\right) & =3 \\
\operatorname{nulltiy}\left(A^{\mathrm{T}}\right) & =1
\end{aligned}
$$

2) [15 points] Let $\mathbf{v}_{1}=(1,-1,0,3)$ and $\mathbf{v}_{2}=(1,0,-1,0)$. Is $\mathbf{v}=(-1,-2,3,6)$ a linear combination of \mathbf{v}_{1} and \mathbf{v}_{2} ? If so, write \mathbf{v} as such linear combination. [Show work!]

Solution.

$$
\left[\begin{array}{rr|r}
1 & 1 & -1 \\
-1 & 0 & 2 \\
0 & -1 & 3 \\
3 & 0 & 6
\end{array}\right] \sim\left[\begin{array}{rr|r}
1 & 1 & -1 \\
0 & 1 & -3 \\
0 & -1 & 3 \\
0 & 3 & 3
\end{array}\right] \sim\left[\begin{array}{ll|r}
1 & 0 & 2 \\
0 & 1 & -3 \\
0 & 0 & 0 \\
0 & 0 & 0
\end{array}\right]
$$

The system has solution $x_{1}=2, x_{2}=-3$, so it is a linear combination, namely

$$
\mathbf{v}=2 \cdot \mathbf{v}_{1}+(-3) \cdot \mathbf{v}_{2}
$$

3) [15 points] Let $W=\operatorname{span}\{(1,0,2,1),(0,1,1,1)\}$. Find a basis for the orthogonal complement W^{\perp}.

Solution.

$$
\left[\begin{array}{llll|l}
1 & 0 & 2 & 1 & 0 \\
0 & 1 & 1 & 1 & 0
\end{array}\right]
$$

is already in reduced row echelon form giving solution

$$
\left[\begin{array}{l}
x_{1} \\
x_{2} \\
x_{3} \\
x_{4}
\end{array}\right]=\left[\begin{array}{r}
-2 s-t \\
-s-t \\
s \\
t
\end{array}\right]=s \cdot\left[\begin{array}{r}
-2 \\
-1 \\
1 \\
0
\end{array}\right]+t \cdot\left[\begin{array}{r}
-1 \\
-1 \\
0 \\
1
\end{array}\right] .
$$

So, a basis for W^{\perp} is $\{(-2,-1,1,0),(-1,-1,0,1)\}$.
4) [15 points] Let $T: \mathbb{R}^{2} \rightarrow \mathbb{R}^{2}$ be the linear transformation for which $T(\mathbf{x})$ is given by:
(i) Rotate \mathbf{x} by 45 degrees [counter-clockwise];
(ii) Reflect the resulting vector about the y-axis;
(iii) Project this last vector onto the x-axis.

Find $[T]$ and $T(-2,1)$.
Solution. There are two ways to find $[T]$. First you can multiply the matrices of the given linear transformations [from right to left]:

$$
[T]=\left[\begin{array}{ll}
1 & 0 \\
0 & 0
\end{array}\right] \cdot\left[\begin{array}{rr}
-1 & 0 \\
0 & 1
\end{array}\right] \cdot\left[\begin{array}{rr}
\cos (\pi / 4) & -\sin (\pi / 4) \\
\sin (\pi / 4) & \cos (\pi / 4)
\end{array}\right]=\left[\begin{array}{cc}
-\sqrt{2} / 2 & \sqrt{2} / 2 \\
0 & 0
\end{array}\right]
$$

Alternatively, we have $[T]=\left[T\left(\mathbf{e}_{1}\right) T\left(\mathbf{e}_{2}\right)\right]$:

$$
\begin{aligned}
& \mathbf{e}_{1}=(1,0) \xrightarrow{(\mathrm{i})}(\sqrt{2} / 2, \sqrt{2} / 2) \xrightarrow{(\text { ii) }}(-\sqrt{2} / 2, \sqrt{2} / 2) \xrightarrow{(\mathrm{iii)}}(-\sqrt{2} / 2,0) \\
& \mathbf{e}_{2}=(0,1) \xrightarrow{(\mathrm{i})}(-\sqrt{2} / 2, \sqrt{2} / 2) \xrightarrow{(\mathrm{ii})}(\sqrt{2} / 2, \sqrt{2} / 2) \xrightarrow{(\mathrm{iii})}(\sqrt{2} / 2,0)
\end{aligned}
$$

So,

$$
[T]=\left[\begin{array}{cc}
-\sqrt{2} / 2 & \sqrt{2} / 2 \\
0 & 0
\end{array}\right]
$$

In either case,

$$
T(-2,1)=[T] \cdot\left[\begin{array}{r}
-2 \\
1
\end{array}\right]=\left[\begin{array}{cc}
-\sqrt{2} / 2 & \sqrt{2} / 2 \\
0 & 0
\end{array}\right] \cdot\left[\begin{array}{r}
-2 \\
1
\end{array}\right]=\left[\begin{array}{c}
3 \sqrt{2} / 2 \\
0
\end{array}\right]
$$

5) [15 points] Let B be the standard basis of P_{2} and $B^{\prime}=\left\{1,1+x, 1+x+x^{2}\right\}$. You may assume [without proving] that B^{\prime} is also a basis of P_{2}.
(a) Find the transition matrix $P_{B \rightarrow B^{\prime}}$.

Solution. We have $(1)_{B}=(1,0,0),(1+x)_{B}=(1,1,0),\left(1+x+x^{2}\right)_{B}=(1,1,1)$. Thus,

$$
\left[\begin{array}{rrr|rrr}
1 & 1 & 1 & 1 & 0 & 0 \\
0 & 1 & 1 & 0 & 1 & 0 \\
0 & 0 & 1 & 0 & 0 & 1
\end{array}\right] \sim\left[\begin{array}{rrr|rrr}
1 & 1 & 0 & 1 & 0 & -1 \\
0 & 1 & 0 & 0 & 1 & -1 \\
0 & 0 & 1 & 0 & 0 & 1
\end{array}\right] \sim\left[\begin{array}{rrr|rrr}
1 & 0 & 0 & 1 & -1 & 0 \\
0 & 1 & 0 & 0 & 1 & -1 \\
0 & 0 & 1 & 0 & 0 & 1
\end{array}\right] .
$$

So,

$$
P_{B \rightarrow B^{\prime}}=\left[\begin{array}{rrr}
1 & -1 & 0 \\
0 & 1 & -1 \\
0 & 0 & 1
\end{array}\right]
$$

(b) Find $\left(1-2 x+3 x^{2}\right)_{B^{\prime}}$.

Solution. We have that $\left(1-2 x+3 x^{2}\right)_{B}=(1,-2,3)$. So,

$$
\left(1-2 x+3 x^{2}\right)_{B^{\prime}}=P_{B \rightarrow B^{\prime}} \cdot\left(1-2 x+3 x^{2}\right)_{B}=\left[\begin{array}{rrr}
1 & -1 & 0 \\
0 & 1 & -1 \\
0 & 0 & 1
\end{array}\right] \cdot\left[\begin{array}{r}
1 \\
-2 \\
3
\end{array}\right]=\left[\begin{array}{r}
3 \\
-5 \\
3
\end{array}\right]
$$

6) Let $S=\{(1,0,1,2,1),(0,1,1,-1,2),(-1,2,1,-4,3),(2,1,2,-1,1),(0,0,1,4,3)\}$ and let $V=\operatorname{span}(S)$ [the subspace of \mathbb{R}^{5} spanned by the set $\left.S\right]$. Given that

$$
\left[\begin{array}{rrrrr}
1 & 0 & 1 & 2 & 1 \\
0 & 1 & 1 & -1 & 2 \\
-1 & 2 & 1 & -4 & 3 \\
2 & 1 & 2 & -1 & 1 \\
0 & 0 & 1 & 4 & 3
\end{array}\right] \xrightarrow{\text { red. ech. form }}\left[\begin{array}{rrrrr}
1 & 0 & 0 & -2 & -2 \\
0 & 1 & 0 & -5 & -1 \\
0 & 0 & 1 & 4 & 3 \\
0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0
\end{array}\right]
$$

and

$$
\left[\begin{array}{rrrrr}
1 & 0 & -1 & 2 & 0 \\
0 & 1 & 2 & 1 & 0 \\
1 & 1 & 1 & 2 & 1 \\
2 & -1 & -4 & -1 & 4 \\
1 & 2 & 3 & 1 & 3
\end{array}\right] \xrightarrow{\text { red. ech. form }}\left[\begin{array}{rrrrr}
1 & 0 & -1 & 0 & 2 \\
0 & 1 & 2 & 0 & 1 \\
0 & 0 & 0 & 1 & -1 \\
0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0
\end{array}\right],
$$

answer the following. [No need to justify.]
(a) [5 points] Find a basis of V made of vectors in S.

Solution. Use columns of the matrix where the elements of S are put into columns [the on in the bottom] that correspond to the columns of its reduced row echelon form with leading ones. So,

$$
B=\{(1,0,1,2,1),(0,1,1,-1,2),(2,1,2,-1,1)\}
$$

[first, second and fourth vectors].
(b) [5 points] If B is the basis you've found in part (a), express the vectors in S that are not in B as a linear combination of vectors in B.

Solution. [You can use the reduced row echelon form, which makes it easy!] If \mathbf{v}_{i} is the i-th vector of S, we have:

$$
\mathbf{v}_{3}=-1 \cdot \mathbf{v}_{1}+2 \cdot \mathbf{v}_{2}, \quad \mathbf{v}_{5}=2 \cdot \mathbf{v}_{1}+1 \cdot \mathbf{v}_{2}+(-1) \cdot \mathbf{v}_{4} .
$$

(c) [5 points] Find a second basis B^{\prime} for V [with $\left.B \neq B^{\prime}\right]$.

Solution. We can now put the vectors of S as rows [top matrix] to find a new basis, made of non-zero vectors of its reduced row echelon form. So, we get

$$
B^{\prime}=\{(1,0,0,-2,-2),(0,1,0,-5,-1),(0,0,1,4,3)\}
$$

(d) [5 points] Find the coordinates of the first vector of B with respect to B^{\prime}.

Solution. The nature of basis B^{\prime} [the "simplest" basis for $\left.\operatorname{span}(S)\right]$, makes it very easy:

$$
\left[\begin{array}{rrr|r}
1 & 0 & 0 & 1 \\
0 & 1 & 0 & 0 \\
0 & 0 & 1 & 1 \\
-2 & -5 & 4 & 2 \\
2 & -1 & 3 & 1
\end{array}\right] \sim\left[\begin{array}{lll|r}
1 & 0 & 0 & 1 \\
0 & 1 & 0 & 0 \\
0 & 0 & 1 & 1 \\
0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0
\end{array}\right]
$$

The system has solution $\left(x_{1}, x_{2}, x_{3}\right)=(1,0,1)$ and so $\left(\mathbf{v}_{1}\right)_{B^{\prime}}=(1,0,1)$.
[Note that the second step to put the matrix of the system in reduced row echelon form is not necessary! We know \mathbf{v}_{1} is a linear combination of elements of B^{\prime}, and hence the system does have a solution, and this solution can be seen straight from the first matrix.]

